Physics-Informed Structure-Preserving Numerical Approximations of Thermodynamically Consistent Models for Non-equilibrium Phenomena
非平衡现象热力学一致模型的物理信息保结构数值近似
基本信息
- 批准号:2405605
- 负责人:
- 金额:$ 20万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-12-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Non-equilibrium phenomena, including those described by non-isothermal and isothermal hydrodynamic models with applications to complex multiphase fluids, are ubiquitous in science. They require well-developed models to describe their dynamics but pose challenges to the algorithms for their approximations. This project aims to establish a computational framework for models of non-equilibrium phenomena that have the property of being thermodynamically consistent. The algorithms to be designed will preserve the desired properties at the discrete levels. Furthermore, these numerical schemes will be utilized to simulate and investigate the dynamics of several classes of non-equilibrium models in an accurate and efficient way. Software will be developed on high-performance computing platforms and made available to the public. Students will be involved and trained through research involvement in the project. Thermodynamically consistent (TC) partial differential equation (PDE) systems, derivable from the GENERIC formalism (General Equation for Non-Equilibrium Reversible-Irreversible Coupling), encompass a large class of models in science and engineering for non-equilibrium phenomena. The project will (1) establish a paradigm for designing structure-preserving, high order, energy stable, and efficient numerical approximations to solve TCPDE systems by exploiting the mathematical structure of the TC models and reformulating them using the GENERIC formalism; (2) design physics-informed deep neural network frameworks to solve TCPDE models while preserving their structures and properties; (3) apply the numerical framework to investigate several classes of TC models; and (4) develop an object-oriented, open-source, and high-performance software package for hybrid GPU-CPU architectures. The outcomes will advance modeling, analysis, and numerical simulations of non-equilibrium thermodynamic and hydrodynamic models, fostering a deeper understanding of non-equilibrium phenomena in a wide range of applications.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非平衡现象,包括非等温和等温流体动力学模型描述的复杂多相流体的应用程序,是无处不在的科学。它们需要完善的模型来描述其动态,但对近似算法提出了挑战。该项目旨在为具有热力学一致性的非平衡现象模型建立一个计算框架。要设计的算法将在离散水平上保持所需的属性。此外,这些数值格式将被用来模拟和研究几类非平衡模型的动力学在一个准确和有效的方式。将在高性能计算平台上开发软件,并向公众提供。学生将通过参与该项目的研究参与和培训。 热力学相容的偏微分方程(PDE)系统,可从通用形式主义(非平衡可逆-不可逆耦合的通用方程)推导出来,包含了科学和工程中用于非平衡现象的一大类模型。该项目将(1)通过利用TC模型的数学结构并使用GENERIC形式主义重新制定它们,建立一个设计结构保持,高阶,能量稳定和有效数值近似的范式来解决TCPDE系统;(2)设计物理信息深度神经网络框架来解决TCPDE模型,同时保持其结构和属性;(3)应用数值框架研究几类TC模型;(4)为混合GPU-CPU架构开发面向对象、开源和高性能的软件包。其成果将推进非平衡热力学和流体力学模型的建模、分析和数值模拟,促进对广泛应用中的非平衡现象的更深入理解。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jia Zhao其他文献
Firefly algorithm guided by general centre particle and its application in node localisation of wireless sensor networks
通用中心粒子引导的萤火虫算法及其在无线传感器网络节点定位中的应用
- DOI:
10.1504/ijwmc.2017.088093 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Li Lv;Hongmin Tian;Jia Zhao;Zhifeng Xie;Tanghuai Fan;Longzhe Han - 通讯作者:
Longzhe Han
Interaction between Track and Long-Span Cable-Stayed Bridge: Recommendations for Calculation
轨道与大跨斜拉桥之间的相互作用:计算建议
- DOI:
10.1155/2020/5463415 - 发表时间:
2020-05 - 期刊:
- 影响因子:0
- 作者:
Kaize Xie;Weigang Zhao;Xiaopei Cai;Ping Wang;Jia Zhao - 通讯作者:
Jia Zhao
Revealing physiological and genetic properties of a dominant maize dwarf Dwarf11 (D11) by integrative analysis
通过综合分析揭示显性玉米矮秆 Dwarf11 (D11) 的生理和遗传特性
- DOI:
10.1007/s11032-016-0455-1 - 发表时间:
2016-03 - 期刊:
- 影响因子:3.1
- 作者:
Yijun Wang;Wenjie Lu;Yao Chen;Dexiang Deng;Haidong Ding;Yunlong Bian;Zhitong Yin;Ya Zhu;Jia Zhao - 通讯作者:
Jia Zhao
Artificial bee colony algorithm with accelerating convergence
加速收敛的人工蜂群算法
- DOI:
10.1504/ijwmc.2016.075222 - 发表时间:
2016-03 - 期刊:
- 影响因子:0
- 作者:
Li Lv;Longzhe Han;Tanghuai Fan;Jia Zhao - 通讯作者:
Jia Zhao
Glycosylation analysis of interleukin-23 receptor: elucidation of glycosylation sites and characterization of attached glycan structures.
IL-23 受体的糖基化分析:糖基化位点的阐明和附着聚糖结构的表征。
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:2.3
- 作者:
Jia Zhao;Yan;P. Reichert;S. Pflanz;B. Pramanik - 通讯作者:
B. Pramanik
Jia Zhao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jia Zhao', 18)}}的其他基金
Physics-Informed Structure-Preserving Numerical Approximations of Thermodynamically Consistent Models for Non-equilibrium Phenomena
非平衡现象热力学一致模型的物理信息保结构数值近似
- 批准号:
2111479 - 财政年份:2021
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: Computational Modeling of How Living Cells Utilize Liquid-Liquid Phase Separation to Organize Chemical Compartments
合作研究:活细胞如何利用液-液相分离来组织化学区室的计算模型
- 批准号:
1816783 - 财政年份:2018
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
相似海外基金
RII Track-4:NSF: Physics-Informed Machine Learning with Organ-on-a-Chip Data for an In-Depth Understanding of Disease Progression and Drug Delivery Dynamics
RII Track-4:NSF:利用器官芯片数据进行物理信息机器学习,深入了解疾病进展和药物输送动力学
- 批准号:
2327473 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
PIDD-MSK: Physics-Informed Data-Driven Musculoskeletal Modelling
PIDD-MSK:物理信息数据驱动的肌肉骨骼建模
- 批准号:
EP/Y027930/1 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Fellowship
Discovering early biomarkers of Alzheimer's disease using genetic and physics-informed networks
利用遗传和物理信息网络发现阿尔茨海默病的早期生物标志物
- 批准号:
2904538 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Studentship
CAREER: Informed Testing — From Full-Field Characterization of Mechanically Graded Soft Materials to Student Equity in the Classroom
职业:知情测试 – 从机械分级软材料的全场表征到课堂上的学生公平
- 批准号:
2338371 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Rapid, Scalable, and Joint Assessment of Seismic Multi-Hazards and Impacts: From Satellite Images to Causality-Informed Deep Bayesian Networks
地震多重灾害和影响的快速、可扩展和联合评估:从卫星图像到因果关系深度贝叶斯网络
- 批准号:
2242590 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: Embedding Material-Informed History through Fractional Calculus State Variable Formulation
合作研究:通过分数阶微积分状态变量公式嵌入材料丰富的历史
- 批准号:
2345437 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
MEtaGenome-informed Antimicrobial resistance Surveillance: Harnessing long-read sequencing for an analytical, indicator and risk assessment framework
基于 MEtaGenome 的抗菌药物耐药性监测:利用长读长测序构建分析、指标和风险评估框架
- 批准号:
MR/Y034457/1 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Research Grant
CAREER: Physics-Informed Deep Learning for Understanding Earthquake Slip Complexity
职业:基于物理的深度学习用于理解地震滑动的复杂性
- 批准号:
2339996 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
CAREER: Advanced and Uncertainty-Informed Site Investigation
职业:高级和不确定性现场调查
- 批准号:
2340596 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: Embedding Material-Informed History through Fractional Calculus State Variable Formulation
合作研究:通过分数阶微积分状态变量公式嵌入材料丰富的历史
- 批准号:
2345438 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant