New Optimization Techniques in Data Mining
数据挖掘中的新优化技术
基本信息
- 批准号:0620677
- 负责人:
- 金额:$ 33.05万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-08-15 至 2012-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This grant provides funding for the development of novel optimization tools to be used for data mining. The work will focus on the incorporation of inputs from disparate sources with different levels of reliability. These inputs will be allowed affect the patterns to a degree that depends on the confidence level attributed to the inputs. The optimization and algorithms developed will also rely on pairwise comparisons, or separation measures, rather than on parametric mapping of the attributes alone. The data mining outcome, in the form of classification, will be an optimal solution to a penalty minimization objective. The penalty is assigned to be higher for deviating from opinions and pairwise comparisons that are more reliable and it will be smaller penalty for opinions and pairwise comparisons for less reliable sources. This family of techniques will be tested for effectiveness against existing methodologies in areas of patient prognosis; customer segmentation; and country or firm credit assessment. The testing will result in calibration and fine tuning of the penalty functions appropriate for use in different contexts.If successful, the data mining techniques are expected to have impact on pattern recognition and on methodologies for capturing expert knowledge. It will enable to incorporate and include expert assessments along side empirical data, and scientific theory predictions each contributing to the final pattern outcome depending on the confidence in the input from each source. Potential applications of the research include financial engineering and health care.
这笔赠款为开发用于数据挖掘的新型优化工具提供资金。这项工作将侧重于纳入来自不同来源、可靠程度不同的投入。 这些输入将被允许影响模式到一定程度,这取决于归因于输入的置信水平。 开发的优化和算法还将依赖于成对比较或分离措施,而不是单独依赖于属性的参数映射。 以分类形式的数据挖掘结果将是惩罚最小化目标的最优解。 对于偏离更可靠的意见和成对比较,惩罚被分配得更高,对于不太可靠的来源,意见和成对比较的惩罚将更小。这一系列的技术将测试的有效性对现有的方法在病人预后领域;客户细分;和国家或公司的信用评估。测试结果将校准和微调适用于不同情况的惩罚函数,如果成功,预计数据挖掘技术将对模式识别和获取专家知识的方法产生影响。 它将能够结合和包括专家评估沿着经验数据和科学理论预测,每个都有助于最终的模式结果,这取决于对来自每个来源的输入的信心。 该研究的潜在应用包括金融工程和医疗保健。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dorit Hochbaum其他文献
Dorit Hochbaum的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dorit Hochbaum', 18)}}的其他基金
A Graph Theoretic Approach for Spatial Dependence in Quality Control and Prediction
质量控制和预测中空间依赖性的图论方法
- 批准号:
1760102 - 财政年份:2018
- 资助金额:
$ 33.05万 - 项目类别:
Standard Grant
Novel Efficient Clustering Techniques for Data Mining, Ranking, Pattern Recognition and Segmentation of Large Scale Data Sets
用于大规模数据集的数据挖掘、排序、模式识别和分割的新型高效聚类技术
- 批准号:
1130662 - 财政年份:2011
- 资助金额:
$ 33.05万 - 项目类别:
Standard Grant
Novel Efficient Clustering Techniques for Data Mining, Ranking, Pattern Recognition and Segmentation of Large Scale Data Sets
用于大规模数据集的数据挖掘、排序、模式识别和分割的新型高效聚类技术
- 批准号:
1200592 - 财政年份:2011
- 资助金额:
$ 33.05万 - 项目类别:
Standard Grant
Design and Analysis of Algorithms for Coping with NP-Hardness
应对NP难题的算法设计与分析
- 批准号:
0084857 - 财政年份:2000
- 资助金额:
$ 33.05万 - 项目类别:
Standard Grant
Exploratory Research on Engineering the Transport Industries (ETI): Solving Large-Scale Logistics Problems in Real-Time: Models, Algorithms and Information Systems
运输行业工程 (ETI) 探索性研究:实时解决大规模物流问题:模型、算法和信息系统
- 批准号:
0085690 - 财政年份:2000
- 资助金额:
$ 33.05万 - 项目类别:
Standard Grant
SGER: Forecast-Robust Capacity Acquisition and Subcontracting Methods
SGER:预测稳健的产能获取和分包方法
- 批准号:
9908705 - 财政年份:1999
- 资助金额:
$ 33.05万 - 项目类别:
Standard Grant
Workshop: Collaboration and Standardization in Supply Chain Management; Berkeley, California, October 25-26, 1999
研讨会:供应链管理的协作和标准化;
- 批准号:
9912058 - 财政年份:1999
- 资助金额:
$ 33.05万 - 项目类别:
Standard Grant
Design and Analysis of Algorithms for Coping with NP-Hardness
应对NP难题的算法设计与分析
- 批准号:
9713482 - 财政年份:1997
- 资助金额:
$ 33.05万 - 项目类别:
Standard Grant
Bottleneck Problems: Analysis and Approximations
瓶颈问题:分析和近似
- 批准号:
8501988 - 财政年份:1985
- 资助金额:
$ 33.05万 - 项目类别:
Continuing Grant
Research Initiation: Analysis and Design of Heuristics For Hard Problems
研究启动:难题启发式分析与设计
- 批准号:
8204695 - 财政年份:1982
- 资助金额:
$ 33.05万 - 项目类别:
Standard Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
供应链管理中的稳健型(Robust)策略分析和稳健型优化(Robust Optimization )方法研究
- 批准号:70601028
- 批准年份:2006
- 资助金额:7.0 万元
- 项目类别:青年科学基金项目
相似海外基金
New optimization techniques to integrate storage and renewable energy in the power network
将存储和可再生能源整合到电网中的新优化技术
- 批准号:
RGPIN-2017-04185 - 财政年份:2022
- 资助金额:
$ 33.05万 - 项目类别:
Discovery Grants Program - Individual
New optimization techniques to integrate storage and renewable energy in the power network
将存储和可再生能源整合到电网中的新优化技术
- 批准号:
RGPIN-2017-04185 - 财政年份:2021
- 资助金额:
$ 33.05万 - 项目类别:
Discovery Grants Program - Individual
New optimization techniques to integrate storage and renewable energy in the power network
将存储和可再生能源整合到电网中的新优化技术
- 批准号:
RGPIN-2017-04185 - 财政年份:2020
- 资助金额:
$ 33.05万 - 项目类别:
Discovery Grants Program - Individual
New optimization techniques for lot sizing Problem under demand uncertainty
批量大小的新优化技术 需求不确定性下的问题
- 批准号:
504732-2017 - 财政年份:2019
- 资助金额:
$ 33.05万 - 项目类别:
Postgraduate Scholarships - Doctoral
New optimization techniques to integrate storage and renewable energy in the power network
将存储和可再生能源整合到电网中的新优化技术
- 批准号:
RGPIN-2017-04185 - 财政年份:2019
- 资助金额:
$ 33.05万 - 项目类别:
Discovery Grants Program - Individual
New optimization techniques for lot sizing Problem under demand uncertainty
批量大小的新优化技术 需求不确定性下的问题
- 批准号:
504732-2017 - 财政年份:2018
- 资助金额:
$ 33.05万 - 项目类别:
Postgraduate Scholarships - Doctoral
New optimization techniques to integrate storage and renewable energy in the power network
将存储和可再生能源整合到电网中的新优化技术
- 批准号:
RGPIN-2017-04185 - 财政年份:2018
- 资助金额:
$ 33.05万 - 项目类别:
Discovery Grants Program - Individual
CDS&E: Better by Design: Establishing Modeling and Optimization Techniques for Producing New Classes of Biomimetic Nanomaterials
CDS
- 批准号:
1761068 - 财政年份:2018
- 资助金额:
$ 33.05万 - 项目类别:
Standard Grant
New optimization techniques for lot sizing Problem under demand uncertainty
批量大小的新优化技术 需求不确定性下的问题
- 批准号:
504732-2017 - 财政年份:2017
- 资助金额:
$ 33.05万 - 项目类别:
Postgraduate Scholarships - Doctoral
New optimization techniques to integrate storage and renewable energy in the power network
将存储和可再生能源整合到电网中的新优化技术
- 批准号:
RGPIN-2017-04185 - 财政年份:2017
- 资助金额:
$ 33.05万 - 项目类别:
Discovery Grants Program - Individual