CDS&E: Better by Design: Establishing Modeling and Optimization Techniques for Producing New Classes of Biomimetic Nanomaterials
CDS
基本信息
- 批准号:1761068
- 负责人:
- 金额:$ 55.47万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-15 至 2023-02-28
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Novel nanomaterials with precisely tailored characteristics can enable innovation in areas ranging from manufacturing to energy storage and drug delivery but designing such materials can be a challenge. This project develops modeling and optimization techniques that will enable researchers to use desired properties to drive materials and process selection. The researcher harnesses the power of mesoscale modeling techniques and computational methods based on Bayesian machine learning and stochastic optimization to search the vast universe of options to identify promising candidates. This approach gives the community an enabling predictive tool for analysis and design of polymer-based nanomaterials. The knowledge gained from this research will be broadly disseminated through publications, conference presentations and by organizing symposia. Educational and outreach programs will be developed to train a diverse STEM workforce and to broaden participation of underrepresented students in the fields of engineering and computational science. Integrating a mesoscale coarse-graining method with stochastic optimization provides an enabling tool in soft materials and advances knowledge about design exploration in high-dimensional search spaces and design optimization under uncertainty. The goal of this project is to significantly reduce the cost of simulating the molecular self-assembly process and the characteristics of assembled materials. The researcher will develop a mesoscale model that describes the dynamics of self-assembly and simulates and predicts the structures and mechanical properties of assembled materials. A coarse-grained approach balances the need for accuracy in material properties, which is the basis for optimization, and the computational efficiency needed to make the optimization feasible. The computational framework, which includes the mesoscale modeling, classification, and optimization steps, will be validated by comparison with experiments on peptoids. This research will enable inverse design of peptoid-based biomimetic nanomaterials with precisely tailored structures and properties for applications such as chemical/biological sensors, biomimetic nanodevices and water/ion transport membranes. The computational methodology will be shared through GitHub and as LAMMPS subroutines and the computer codes will be released to the scientific community as open-source software.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
具有精确定制特性的新型纳米材料可以在从制造到储能和药物输送等领域实现创新,但设计此类材料可能是一项挑战。该项目开发建模和优化技术,使研究人员能够使用所需的属性来驱动材料和工艺选择。研究人员利用基于贝叶斯机器学习和随机优化的中尺度建模技术和计算方法的力量来搜索大量的选项,以确定有希望的候选人。这种方法为社区提供了一个分析和设计聚合物基纳米材料的有利预测工具。从这项研究中获得的知识将通过出版物、会议介绍和组织专题讨论会广泛传播。将制定教育和推广计划,以培训多元化的STEM劳动力,并扩大工程和计算科学领域代表性不足的学生的参与。将中尺度粗粒化方法与随机优化相结合,为软材料提供了一种使能工具,并提高了关于高维搜索空间中的设计探索和不确定性下的设计优化的知识。该项目的目标是显著降低模拟分子自组装过程和组装材料特性的成本。研究人员将开发一个介观模型,描述自组装的动力学,模拟和预测组装材料的结构和力学性能。粗粒度的方法平衡了对材料属性精度的需求,这是优化的基础,以及使优化可行所需的计算效率。计算框架,其中包括中尺度建模,分类和优化步骤,将通过与peptoids的实验比较进行验证。这项研究将使基于肽的仿生纳米材料的逆向设计具有精确定制的结构和性能,用于化学/生物传感器,仿生纳米器件和水/离子传输膜等应用。计算方法将通过GitHub和LAMMPS子程序共享,计算机代码将作为开源软件发布给科学界。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Multifidelity Cross-Entropy Estimation of Conditional Value-at-Risk for Risk-Averse Design Optimization
用于风险规避设计优化的条件风险价值的多保真交叉熵估计
- DOI:10.2514/6.2020-2129
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Chaudhuri, A.;Peherstorfer, B.;Willcox, K.
- 通讯作者:Willcox, K.
A multigrid preconditioner for spatially adaptive high-order meshless method on fluid–solid interaction problems
用于解决流固相互作用问题的空间自适应高阶无网格方法的多重网格预处理器
- DOI:10.1016/j.cma.2022.115506
- 发表时间:2022
- 期刊:
- 影响因子:7.2
- 作者:Ye, Zisheng;Hu, Xiaozhe;Pan, Wenxiao
- 通讯作者:Pan, Wenxiao
Context-Aware Surrogate Modeling for Balancing Approximation and Sampling Costs in Multifidelity Importance Sampling and Bayesian Inverse Problems
用于平衡多保真度重要性采样和贝叶斯逆问题中的近似和采样成本的上下文感知代理建模
- DOI:10.1137/21m1445594
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Alsup, Terrence;Peherstorfer, Benjamin
- 通讯作者:Peherstorfer, Benjamin
Physics-informed regularization and structure preservation for learning stable reduced models from data with operator inference
基于物理的正则化和结构保存,用于通过算子推理从数据中学习稳定的简化模型
- DOI:10.1016/j.cma.2022.115836
- 发表时间:2023
- 期刊:
- 影响因子:7.2
- 作者:Sawant, Nihar;Kramer, Boris;Peherstorfer, Benjamin
- 通讯作者:Peherstorfer, Benjamin
Data-driven low-fidelity models for multi-fidelity Monte Carlo sampling in plasma micro-turbulence analysis
- DOI:10.1016/j.jcp.2021.110898
- 发表时间:2021-03
- 期刊:
- 影响因子:0
- 作者:J. Konrad;Ionut-Gabriel Farcas;B. Peherstorfer;A. Siena;F. Jenko;T. Neckel;H. Bungartz
- 通讯作者:J. Konrad;Ionut-Gabriel Farcas;B. Peherstorfer;A. Siena;F. Jenko;T. Neckel;H. Bungartz
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wenxiao Pan其他文献
Multiscale modelling of hematologic disorders
血液疾病的多尺度建模
- DOI:
10.1007/978-88-470-1935-5_10 - 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
D. Fedosov;I. Pivkin;Wenxiao Pan;M. Dao;B. Caswell;G. Karniadakis - 通讯作者:
G. Karniadakis
Discharge Performance of Li–O2 Batteries Using a Multiscale Modeling Approach
使用多尺度建模方法研究 Li-O2 电池的放电性能
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
J. Bao;Wu Xu;P. Bhattacharya;M. Stewart;Ji‐Guang Zhang;Wenxiao Pan - 通讯作者:
Wenxiao Pan
Nanoscale phonon dynamics in self-assembled nanoparticle lattices
自组装纳米粒子晶格中的纳米级声子动力学
- DOI:
10.1038/s41563-025-02253-3 - 发表时间:
2025-06-17 - 期刊:
- 影响因子:38.500
- 作者:
Chang Qian;Ethan Stanifer;Zhan Ma;Lehan Yao;Binbin Luo;Chang Liu;Jiahui Li;Puquan Pan;Wenxiao Pan;Xiaoming Mao;Qian Chen - 通讯作者:
Qian Chen
Understanding the mechanisms of sickle cell disease by simulations with a discrete particle model
通过离散粒子模型模拟了解镰状细胞病的机制
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Katrina Hui;G. Lin;Wenxiao Pan - 通讯作者:
Wenxiao Pan
Theoretical evaluation of the configurations and Raman spectra of 209 polychlorinated biphenyl congeners
209种多氯联苯同系物的构型和拉曼光谱的理论评价
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:8.8
- 作者:
Yongchao Lai;Wenxiao Pan;Shouqing Ni;Dongju Zhang;Jinhua Zhan - 通讯作者:
Jinhua Zhan
Wenxiao Pan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Prismatic cell improvement through better mechanical design
通过更好的机械设计改进棱柱形电池
- 批准号:
10095372 - 财政年份:2024
- 资助金额:
$ 55.47万 - 项目类别:
Investment Accelerator
A novel diagnostic tool leveraging AI for protein design and microfluidics for better cell therapy management
一种利用人工智能进行蛋白质设计和微流体技术以实现更好的细胞治疗管理的新型诊断工具
- 批准号:
10082156 - 财政年份:2023
- 资助金额:
$ 55.47万 - 项目类别:
Collaborative R&D
Investigating the mechanisms of disease progression in HIV/TB co-infection to design interventions for better clinical outcomes
研究 HIV/TB 合并感染的疾病进展机制,以设计干预措施以获得更好的临床结果
- 批准号:
493476 - 财政年份:2023
- 资助金额:
$ 55.47万 - 项目类别:
Operating Grants
(Inter)facing the Bitter Truth: How to Design Better Interfaces in Next-Gen Batteries using Atomistic Simulations Assisted by Machine-Learning
(交互)面对痛苦的真相:如何使用机器学习辅助的原子模拟设计下一代电池中更好的界面
- 批准号:
2886070 - 财政年份:2023
- 资助金额:
$ 55.47万 - 项目类别:
Studentship
Computational Modelling of Parachute Deployment to allow better Optimisation through Parachute Design
降落伞展开的计算模型可通过降落伞设计实现更好的优化
- 批准号:
10062651 - 财政年份:2023
- 资助金额:
$ 55.47万 - 项目类别:
Collaborative R&D
SHF: Small: Explainable Machine Learning for Better Design of Very Large Scale Integrated Circuits
SHF:小:可解释的机器学习,用于更好地设计超大规模集成电路
- 批准号:
2322713 - 财政年份:2023
- 资助金额:
$ 55.47万 - 项目类别:
Standard Grant
Heteromolecular Interface Design for Better Multiferroic Molecular Spintronics
更好的多铁性分子自旋电子学的异分子界面设计
- 批准号:
2317464 - 财政年份:2023
- 资助金额:
$ 55.47万 - 项目类别:
Standard Grant
ERI: Better by Design: Rational Design and Synthesis of Alloy (Electro)Catalysts Atom-by-Atom
ERI:更好的设计:逐原子合金(电)催化剂的合理设计与合成
- 批准号:
2301427 - 财政年份:2023
- 资助金额:
$ 55.47万 - 项目类别:
Standard Grant
Using system-aware and people-centred design methods to help people recover better from musculoskeletal issues
使用系统感知和以人为本的设计方法帮助人们从肌肉骨骼问题中更好地恢复
- 批准号:
10088568 - 财政年份:2023
- 资助金额:
$ 55.47万 - 项目类别:
Collaborative R&D
Exposure on a chip to better design aerosolised drug delivery deep into the lungs
暴露在芯片上以更好地设计深入肺部的雾化药物输送
- 批准号:
2879692 - 财政年份:2023
- 资助金额:
$ 55.47万 - 项目类别:
Studentship