CompBio: Collaborative Research: Development of Effective Gene Selection Algorithms for Microarray Data Analysis

CompBio:合作研究:开发用于微阵列数据分析的有效基因选择算法

基本信息

  • 批准号:
    0621889
  • 负责人:
  • 金额:
    $ 25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2006
  • 资助国家:
    美国
  • 起止时间:
    2006-10-01 至 2010-09-30
  • 项目状态:
    已结题

项目摘要

With the success of the Human Genome Project, a microarray can now potentially handle the genes in an entire genome scale. A typical microarray data set involves a massive number of genes. A dramatic dimension reduction to a much smaller number of significant genes, responsible for specific conditions, can potentially increase the possibility of further biological study and knowledge regarding the roles of specific genes.Any methodology that can improve our recognition of significant genes among a large number of genes, and often a limited set of available experimental results, could have a significant impact on our understanding of diseased and normal states, and eventually on diagnosis, prognosis, and drug design. The method that we propose to investigate here is intended to provide critical information on the roles of genes where the key component of our approach is subspace-based methods, which have demonstrated great success in numerous pattern recognition tasks including efficient classification, clustering, and fast search.The development of effective computer-based algorithms for gene selection is indispensable since it is virtually impossible to rely solely on biological testing due to the enormous complexity of the problems. What is novel and unique in our proposed research is that we seek to find a mathematically rigorous framework that models gene selection problems, with careful consideration of the significance of the biological characteristics of the problem. Utilizing our knowledge and previous results on feature extraction, and by discovering their mathematical relationship to feature selection, efficient and effective nonparametric methods for gene selection will be designed. An important role will be played by the nonnegative matrix factorization in building a mathematically rigorous bridge between feature extraction and feature selection in our proposed research. In the process, we will also explore novel methods for estimating missing values as a preprocessing stage of gene selection based on the alternating least squares and the structured total least norm formulations. All results obtained, the new algorithms and software developed, as well as the new data sets generated and compiled will be made available to the research community, to teaching faculty, and to both graduate and undergraduate students, using existing Web servers at the Georgia Institute of Technology and University of Texas at Dallas.Intellectual Merit: This research will produce methods that will have a great impact on computational microarray analysis. The gene selection and missing value estimation methods developed in this research allow significant reduction in complexity of biological testing due to the initial reduction of the problem dimension, thus substantially improve detailed study of significant genes. The feature selection and feature extraction algorithms developed in this research will be applicable to many other problems where data sets in high dimensional spaces need to be handled efficiently and effectively, such as text processing, facial recognition, finger print classification, iris recognition. The missing value estimation methods designed in this research can also be utilized in recovering missing data such as in collaborative filtering.Broader Impact: The research will enhance advanced theory of computational biology and bioinformatics. The developed techniques will also have potential applications in database management, medical examination and diagnosis, bio-chemical selection, and biological networks. The graduate student involvement in this research will have numerous future benefits. The discovery and research experience of the students will prepare them for productive careers in academia, research labs, and industry in highly important current research areas in bioinformatics.
随着人类基因组计划的成功,微阵列现在有可能在整个基因组范围内处理基因。一个典型的微阵列数据集涉及大量基因。极大地减少导致特定情况的重要基因的数量,可以潜在地增加进一步生物学研究的可能性和关于特定基因作用的知识。任何能够提高我们对大量基因中重要基因的识别的方法学,以及通常有限的一组可用的实验结果,都可能对我们对疾病和正常状态的理解产生重大影响,最终对诊断、预后和药物设计产生重大影响。我们建议在这里研究的方法旨在提供关于基因作用的关键信息,其中我们方法的关键组成部分是基于子空间的方法,这种方法在许多模式识别任务中都表现出了巨大的成功,包括有效的分类、聚类和快速搜索。开发有效的基于计算机的基因选择算法是必不可少的,因为由于问题的巨大复杂性,几乎不可能仅仅依靠生物测试。在我们提出的研究中,新颖和独特的是,我们试图找到一个数学上严格的框架,对基因选择问题进行建模,并仔细考虑问题的生物学特征的重要性。利用我们的知识和前人在特征提取方面的成果,通过发现它们与特征选择的数学关系,将设计出高效和有效的非参数基因选择方法。在我们提出的研究中,非负矩阵分解将在特征提取和特征选择之间建立数学上严格的桥梁方面发挥重要作用。在这个过程中,我们还将探索新的方法来估计缺失值,作为基于交替最小二乘和结构化总体最小范数公式的基因选择的预处理阶段。所有获得的结果,开发的新算法和软件,以及生成和编译的新数据集,将提供给研究社区、教师以及研究生和本科生,使用佐治亚理工学院和德克萨斯大学达拉斯分校现有的Web服务器。智力优势:这项研究将产生对计算微阵列分析产生重大影响的方法。本研究开发的基因选择和缺失值估计方法,由于问题维度的初步降低,大大降低了生物测试的复杂性,从而显著改善了对重要基因的详细研究。本文提出的特征选择和特征提取算法将适用于其他许多需要高效处理高维空间数据集的问题,如文本处理、人脸识别、指纹分类、虹膜识别等。本研究设计的缺失值估计方法也可用于缺失数据的恢复,如协同过滤。广泛的影响:该研究将加强计算生物学和生物信息学的先进理论。所开发的技术还将在数据库管理、医学检查和诊断、生物化学选择和生物网络方面具有潜在的应用。研究生参与这项研究将在未来带来许多好处。学生的发现和研究经验将为他们在学术界、研究实验室和工业中从事生物信息学当前非常重要的研究领域的富有成效的职业生涯做好准备。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Haesun Park其他文献

Unfolding Latent Tree Structures using 4th Order Tensors
使用四阶张量展开潜在树结构
A Dynamic Data Driven Application System for Vehicle Tracking
用于车辆跟踪的动态数据驱动应用系统
  • DOI:
    10.1016/j.procs.2014.05.108
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    R. Fujimoto;Angshuman Guin;M. Hunter;Haesun Park;G. Kanitkar;R. Kannan;Michael Milholen;Sabra A. Neal;P. Pecher
  • 通讯作者:
    P. Pecher
GPS-Based Shortest-Path Routing Scheme in Mobile Ad Hoc Network
移动Ad Hoc网络中基于GPS的最短路径路由方案
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Haesun Park;Soo;So;Joo
  • 通讯作者:
    Joo
Biocompatibility Issues of Implantable Drug Delivery Systems
  • DOI:
    10.1023/a:1016012520276
  • 发表时间:
    1996-01-01
  • 期刊:
  • 影响因子:
    4.300
  • 作者:
    Haesun Park;Kinam Park
  • 通讯作者:
    Kinam Park
Efficient Implementation of Jacobi Algorithms and Jacobi Sets on Distributed Memory Architectures
雅可比算法和雅可比集在分布式内存架构上的高效实现

Haesun Park的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Haesun Park', 18)}}的其他基金

Collaborative Research: OAC Core: Robust, Scalable, and Practical Low Rank Approximation
合作研究:OAC 核心:稳健、可扩展且实用的低阶近似
  • 批准号:
    2106738
  • 财政年份:
    2021
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
SI2-SSE: Collaborative Research: High Performance Low Rank Approximation for Scalable Data Analytics
SI2-SSE:协作研究:可扩展数据分析的高性能低秩近似
  • 批准号:
    1642410
  • 财政年份:
    2016
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
CAREER: New Representations of Probability Distributions to Improve Machine Learning --- A Unified Kernel Embedding Framework for Distributions
职业:改进机器学习的概率分布的新表示——统一的分布内核嵌入框架
  • 批准号:
    1350983
  • 财政年份:
    2014
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
EAGER: Hierarchical Topic Modeling by Nonnegative Matrix Factorization for Interactive Multi-scale Analysis of Text Data
EAGER:通过非负矩阵分解进行分层主题建模,用于文本数据的交互式多尺度分析
  • 批准号:
    1348152
  • 财政年份:
    2013
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
EAGER: Fast and Accurate Nonnegative Tensor Decompositions: Algorithms and Software
EAGER:快速准确的非负张量分解:算法和软件
  • 批准号:
    0956517
  • 财政年份:
    2009
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
FODAVA-Lead: Dimension Reduction and Data Reduction: Foundations for Visualization
FODAVA-Lead:降维和数据缩减:可视化的基础
  • 批准号:
    0808863
  • 财政年份:
    2008
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
MSPA-MCS: Collaborative Research: Fast Nonnegative Matrix Factorizations: Theory, Algorithms, and Applications
MSPA-MCS:协作研究:快速非负矩阵分解:理论、算法和应用
  • 批准号:
    0732318
  • 财政年份:
    2007
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
SGER: Effective Network Anomaly Detection Based on Adaptive Machine Learning
SGER:基于自适应机器学习的有效网络异常检测
  • 批准号:
    0715342
  • 财政年份:
    2007
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: Greedy Approximations with Nonsubmodular Potential Functions
协作研究:具有非子模势函数的贪婪近似
  • 批准号:
    0728812
  • 财政年份:
    2007
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Special Meeting: Workshop on Future Direction in Numerical Algorithms and Optimization
特别会议:数值算法与优化未来方向研讨会
  • 批准号:
    0633793
  • 财政年份:
    2006
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
  • 批准号:
    2348998
  • 财政年份:
    2025
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
  • 批准号:
    2348999
  • 财政年份:
    2025
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: Investigating Southern Ocean Sea Surface Temperatures and Freshening during the Late Pliocene and Pleistocene along the Antarctic Margin
合作研究:调查上新世晚期和更新世沿南极边缘的南大洋海面温度和新鲜度
  • 批准号:
    2313120
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: Non-Linearity and Feedbacks in the Atmospheric Circulation Response to Increased Carbon Dioxide (CO2)
合作研究:大气环流对二氧化碳 (CO2) 增加的响应的非线性和反馈
  • 批准号:
    2335762
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: Using Adaptive Lessons to Enhance Motivation, Cognitive Engagement, And Achievement Through Equitable Classroom Preparation
协作研究:通过公平的课堂准备,利用适应性课程来增强动机、认知参与和成就
  • 批准号:
    2335802
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: Using Adaptive Lessons to Enhance Motivation, Cognitive Engagement, And Achievement Through Equitable Classroom Preparation
协作研究:通过公平的课堂准备,利用适应性课程来增强动机、认知参与和成就
  • 批准号:
    2335801
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: Holocene biogeochemical evolution of Earth's largest lake system
合作研究:地球最大湖泊系统的全新世生物地球化学演化
  • 批准号:
    2336132
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: LTREB: The importance of resource availability, acquisition, and mobilization to the evolution of life history trade-offs in a variable environment.
合作研究:LTREB:资源可用性、获取和动员对于可变环境中生命史权衡演变的重要性。
  • 批准号:
    2338394
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Collaborative Research: Constraining next generation Cascadia earthquake and tsunami hazard scenarios through integration of high-resolution field data and geophysical models
合作研究:通过集成高分辨率现场数据和地球物理模型来限制下一代卡斯卡迪亚地震和海啸灾害情景
  • 批准号:
    2325311
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: BoCP-Implementation: Testing Evolutionary Models of Biotic Survival and Recovery from the Permo-Triassic Mass Extinction and Climate Crisis
合作研究:BoCP-实施:测试二叠纪-三叠纪大规模灭绝和气候危机中生物生存和恢复的进化模型
  • 批准号:
    2325380
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了