CAREER: New Representations of Probability Distributions to Improve Machine Learning --- A Unified Kernel Embedding Framework for Distributions

职业:改进机器学习的概率分布的新表示——统一的分布内核嵌入框架

基本信息

  • 批准号:
    1350983
  • 负责人:
  • 金额:
    $ 49.97万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-05-15 至 2021-04-30
  • 项目状态:
    已结题

项目摘要

Computational intelligence touches our lives daily. Web searches, weather prediction, detecting financial fraud, medicine and education benefit from this ubiquitous technology. Problems in computational intelligence such as image classification and predicting properties of new materials produce copious amounts of high-dimensional, complex data. Many algorithms in computational intelligence rely on probability distributions, and such data can carry unusual distributions that challenge traditional methods of modeling. (For example, they are typically not textbook distributions such as the Gaussian.) In some applications, the data input to the algorithms are themselves probability distributions. Existing techniques are cannot both capture unusual distributions and scale to millions of data points without stalling the computation. There is a pressing need for a flexible, efficient framework for representing, learning, and reasoning about datasets arising from these problems.This project will address these challenges by developing a novel and unified framework to represent and model, learn, and use probability distributions in computational intelligence. To evaluate the utility of the new techniques, the project will test them on difficult real-world problems in computer image analysis, materials science, and flow cytometry (a biotechnology technique used for cell counting, cell sorting, and protein engineering).The project, an NSF CAREER award, will integrate the research results with several education intiatives. New curricula will be designed for both undergraduate and graduate students, with empahsis on students from under-represented groups. A new online course will be created to make the results accessible to massive online masters students. Finally, advanced high school math teachers will be engaged to design problems related to the reserach for use in a math competition for advanced high school students.This project will (1) create a novel and unified nonparametric kernel framework for distributional data and distributions with fine-grained statistical properties, and (2) develop principled and scalable algorithms for nonparametric analysis of big data. The unified kernel embedding framework will advance large scale nonparametric data analysis significantly, and play an important synergistic role in bridging together traditionally separate research areas in data analysis, including kernel methods, graphical models, optimization, nonparametric Bayesian methods, functional analysis and tensor data analysis. In addition to advances in algorithmic methods, the applications to large-scale image classification, flow cytometry, and materials property prediction have the potential for transformative impact on society.
计算智能每天都在影响我们的生活。 网络搜索、天气预报、金融欺诈检测、医疗和教育都受益于这种无处不在的技术。 计算智能中的问题,如图像分类和预测新材料的特性,产生了大量的高维复杂数据。 计算智能中的许多算法都依赖于概率分布,而这些数据可能带有不寻常的分布,这对传统的建模方法构成了挑战。 (For例如,它们通常不是教科书分布,如高斯分布。 在某些应用中,输入到算法的数据本身就是概率分布。 现有技术无法在不停止计算的情况下捕获异常分布并扩展到数百万个数据点。 有一个迫切需要一个灵活的,高效的框架来表示,学习和推理的数据集所产生的这些问题。本项目将通过开发一个新颖的和统一的框架来表示和建模,学习和使用计算智能中的概率分布来解决这些挑战。 为了评估新技术的实用性,该项目将在计算机图像分析、材料科学和流式细胞术(一种用于细胞计数、细胞分选和蛋白质工程的生物技术)等现实世界中的难题上测试它们。该项目是NSF CAREER奖,将把研究成果与几项教育计划结合起来。 新课程将为本科生和研究生设计,重点关注代表性不足的群体的学生。 一个新的在线课程将被创建,使大量的在线硕士生访问的结果。 最后,高中数学教师将参与设计与研究相关的问题,用于高中学生的数学竞赛。该项目将(1)为分布数据和具有细粒度统计特性的分布创建一个新颖且统一的非参数内核框架,(2)开发大数据非参数分析的原则性和可扩展算法。统一的核嵌入框架将大大推进大规模非参数数据分析,并在将数据分析中传统独立的研究领域(包括核方法,图形模型,优化,非参数贝叶斯方法,函数分析和张量数据分析)连接起来方面发挥重要的协同作用。除了算法方法的进步之外,大规模图像分类、流式细胞术和材料属性预测的应用也有可能对社会产生变革性的影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Haesun Park其他文献

Unfolding Latent Tree Structures using 4th Order Tensors
使用四阶张量展开潜在树结构
A Dynamic Data Driven Application System for Vehicle Tracking
用于车辆跟踪的动态数据驱动应用系统
  • DOI:
    10.1016/j.procs.2014.05.108
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    R. Fujimoto;Angshuman Guin;M. Hunter;Haesun Park;G. Kanitkar;R. Kannan;Michael Milholen;Sabra A. Neal;P. Pecher
  • 通讯作者:
    P. Pecher
GPS-Based Shortest-Path Routing Scheme in Mobile Ad Hoc Network
移动Ad Hoc网络中基于GPS的最短路径路由方案
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Haesun Park;Soo;So;Joo
  • 通讯作者:
    Joo
Biocompatibility Issues of Implantable Drug Delivery Systems
  • DOI:
    10.1023/a:1016012520276
  • 发表时间:
    1996-01-01
  • 期刊:
  • 影响因子:
    4.300
  • 作者:
    Haesun Park;Kinam Park
  • 通讯作者:
    Kinam Park
Efficient Implementation of Jacobi Algorithms and Jacobi Sets on Distributed Memory Architectures
雅可比算法和雅可比集在分布式内存架构上的高效实现

Haesun Park的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Haesun Park', 18)}}的其他基金

Collaborative Research: OAC Core: Robust, Scalable, and Practical Low Rank Approximation
合作研究:OAC 核心:稳健、可扩展且实用的低阶近似
  • 批准号:
    2106738
  • 财政年份:
    2021
  • 资助金额:
    $ 49.97万
  • 项目类别:
    Standard Grant
SI2-SSE: Collaborative Research: High Performance Low Rank Approximation for Scalable Data Analytics
SI2-SSE:协作研究:可扩展数据分析的高性能低秩近似
  • 批准号:
    1642410
  • 财政年份:
    2016
  • 资助金额:
    $ 49.97万
  • 项目类别:
    Standard Grant
EAGER: Hierarchical Topic Modeling by Nonnegative Matrix Factorization for Interactive Multi-scale Analysis of Text Data
EAGER:通过非负矩阵分解进行分层主题建模,用于文本数据的交互式多尺度分析
  • 批准号:
    1348152
  • 财政年份:
    2013
  • 资助金额:
    $ 49.97万
  • 项目类别:
    Standard Grant
EAGER: Fast and Accurate Nonnegative Tensor Decompositions: Algorithms and Software
EAGER:快速准确的非负张量分解:算法和软件
  • 批准号:
    0956517
  • 财政年份:
    2009
  • 资助金额:
    $ 49.97万
  • 项目类别:
    Standard Grant
FODAVA-Lead: Dimension Reduction and Data Reduction: Foundations for Visualization
FODAVA-Lead:降维和数据缩减:可视化的基础
  • 批准号:
    0808863
  • 财政年份:
    2008
  • 资助金额:
    $ 49.97万
  • 项目类别:
    Continuing Grant
MSPA-MCS: Collaborative Research: Fast Nonnegative Matrix Factorizations: Theory, Algorithms, and Applications
MSPA-MCS:协作研究:快速非负矩阵分解:理论、算法和应用
  • 批准号:
    0732318
  • 财政年份:
    2007
  • 资助金额:
    $ 49.97万
  • 项目类别:
    Standard Grant
SGER: Effective Network Anomaly Detection Based on Adaptive Machine Learning
SGER:基于自适应机器学习的有效网络异常检测
  • 批准号:
    0715342
  • 财政年份:
    2007
  • 资助金额:
    $ 49.97万
  • 项目类别:
    Standard Grant
Collaborative Research: Greedy Approximations with Nonsubmodular Potential Functions
协作研究:具有非子模势函数的贪婪近似
  • 批准号:
    0728812
  • 财政年份:
    2007
  • 资助金额:
    $ 49.97万
  • 项目类别:
    Standard Grant
CompBio: Collaborative Research: Development of Effective Gene Selection Algorithms for Microarray Data Analysis
CompBio:合作研究:开发用于微阵列数据分析的有效基因选择算法
  • 批准号:
    0621889
  • 财政年份:
    2006
  • 资助金额:
    $ 49.97万
  • 项目类别:
    Continuing Grant
Special Meeting: Workshop on Future Direction in Numerical Algorithms and Optimization
特别会议:数值算法与优化未来方向研讨会
  • 批准号:
    0633793
  • 财政年份:
    2006
  • 资助金额:
    $ 49.97万
  • 项目类别:
    Standard Grant

相似海外基金

Exploring and exploiting new representations for multivariate extremes
探索和利用多元极值的新表示
  • 批准号:
    EP/X010449/1
  • 财政年份:
    2023
  • 资助金额:
    $ 49.97万
  • 项目类别:
    Research Grant
Collaborative Research: CCRI: New: Building a Broad Infrastructure for Uniform Meaning Representations
合作研究:CCRI:新:为统一含义表示构建广泛的基础设施
  • 批准号:
    2213805
  • 财政年份:
    2022
  • 资助金额:
    $ 49.97万
  • 项目类别:
    Standard Grant
Collaborative Research: CCRI: New: Building a Broad Infrastructure for Uniform Meaning Representations
合作研究:CCRI:新:为统一含义表示构建广泛的基础设施
  • 批准号:
    2213804
  • 财政年份:
    2022
  • 资助金额:
    $ 49.97万
  • 项目类别:
    Standard Grant
Representations of Waste People in the New World: American National Identity in the Age of the Nation-State and Beyond
新世界中废人的表征:民族国家时代及以后的美国民族认同
  • 批准号:
    22K00491
  • 财政年份:
    2022
  • 资助金额:
    $ 49.97万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
From pattern to function: eco-evolutionary representations of complex spatial structure for the new era of spatial biology
从模式到功能:空间生物学新时代复杂空间结构的生态进化表征
  • 批准号:
    10501428
  • 财政年份:
    2022
  • 资助金额:
    $ 49.97万
  • 项目类别:
Local theta correspondence: a new study through the theories of types and l-modular representations
局部 theta 对应:通过类型和 l 模表示理论进行的新研究
  • 批准号:
    EP/V061739/1
  • 财政年份:
    2022
  • 资助金额:
    $ 49.97万
  • 项目类别:
    Research Grant
Compositional Generalization in open-domain Visual Question Answering: A New Direction using Multimodal Grounded Representations using Graph Neural Networks
开放域视觉问答中的组合概括:使用图神经网络的多模态接地表示的新方向
  • 批准号:
    559027-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 49.97万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
From pattern to function: eco-evolutionary representations of complex spatial structure for the new era of spatial biology
从模式到功能:空间生物学新时代复杂空间结构的生态进化表征
  • 批准号:
    10710177
  • 财政年份:
    2022
  • 资助金额:
    $ 49.97万
  • 项目类别:
Compositional Generalization in open-domain Visual Question Answering: A New Direction using Multimodal Grounded Representations using Graph Neural Networks
开放域视觉问答中的组合概括:使用图神经网络的多模态接地表示的新方向
  • 批准号:
    559027-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 49.97万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Succession and creation of new representations on dance in urban area of Ethiopia
埃塞俄比亚城市地区舞蹈新表现形式的继承和创造
  • 批准号:
    21K17939
  • 财政年份:
    2021
  • 资助金额:
    $ 49.97万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了