Nano: Collaborative Research: EMT : Toward Universal Bottom-Up Nanofabrication with DNA

纳米:合作研究:EMT:利用 DNA 实现通用自下而上的纳米加工

基本信息

  • 批准号:
    0622046
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2006
  • 资助国家:
    美国
  • 起止时间:
    2006-10-01 至 2009-05-31
  • 项目状态:
    已结题

项目摘要

Background. One of the greatest contrasts between the biological organisms and human technology lies in how they are constructed. Plants and animals grow from the inside out, often from a single cell to an organism containing billions of cells, each of which is built from molecular components that are manufactured with atomic precision within the cell. In contrast, mankind's greatest engineering marvels, such as airplanes and skyscrapers and computers, are put together from the outside in, with components being manufactured in factories and assembled piece by piece. This distinction is often referred to as "bottom-up" vs "top-down" assembly in the biological "bottom-up" approach, the assembly process is guided by the components themselves, while in the engineering "top-down" approach, there is an entity conceptually above the object being built that supervises and guides the manufacturing process. Human engineering has mastered top-down methods to create systems of great complexity (but has not extended them to the atomic and molecular scale) and has exploited bottom-up methods for the synthesis of diverse molecular, polymeric and crystalline structures (but has not created information-rich structures of great complexity). Project Goals. Our goal is to demonstrate how bottom-up techniques can create complex atomically-defined structures, as biology does, by embedding information and computational processes within the molecules themselves. In biological development, a program (the genome) uses biochemistry to guide the growth process and determine the ultimate form of the organism. In the parlance of computer science, a system that can be programmed to accomplish any task that can be accomplished is called a "universal" system. A universal computer can be programmed to perform any computation, while a universal constructor can be programmed to carry out any construction task. Recent work has theoretically shown that universal molecular self-assembly is possible and has experimentally demonstrated that the approach shows promise, using DNA as a construction material to create functional molecular devices so-called "DNA nanotechnology". In this proposal, we aim to bring DNA nanotechnology to the point where universal bottom-up self-assembly can be achieved well enough that immediate technological applications can be demonstrated. Specific Aims. We aim to make major advances both in our ability to program complex self-assembly logic and in our ability to interface the DNA structures to chemically-, optically-, and electronically-relevant materials. We will focus on four main goals, which span the range from long-term fundamental work to near-term development: (1) self-assembly of a template for a complex molecular-scale electronic circuit; (2) programming the behavior of molecular walking motors to transport components in nanofabrication tasks; (3) attaching carbon nanotube wires to create small nanoscale electronic circuits; and (4) integrating bottom-up and top-down fabrication by placing and orienting self-assembled components at target locations on silicon wafers with functional electrical contacts. Uniquely, the aims of this research require simultaneously development of two novel computing systems: the first, inspired by biological self-assembly and development, operates at the level of molecular machines and biochemistry, and will be programmed to construct the second, composed of carbon nanotubes assembled into nanoscale circuits, which operates at the electrical level like conventional computing devices.Broader Impact. An important aspect of this project will be the training of young scientists (undergraduates, graduate students, and postdocs) capable of spanning the interdisciplinary subjects involved in this work.
背景生物有机体和人类技术之间最大的差异之一在于它们是如何构建的。植物和动物是由内而外生长的,通常是从一个细胞到一个包含数十亿个细胞的生物体,每个细胞都是由细胞内原子精度制造的分子组成部分构成的。 相比之下,人类最伟大的工程奇迹,如飞机、摩天大楼和计算机,都是由外而内组装起来的,部件是在工厂里制造的,然后一块一块地组装起来。 这种区别通常被称为“自下而上”与“自上而下”的组装,在生物学的“自下而上”方法中,组装过程由组件本身指导,而在工程学的“自上而下”方法中,在概念上有一个实体在被建造的物体之上,监督和指导制造过程。 人类工程学已经掌握了自上而下的方法来创造非常复杂的系统(但还没有将它们扩展到原子和分子尺度),并利用自下而上的方法来合成各种分子,聚合物和晶体结构(但还没有创造出非常复杂的信息丰富的结构)。 项目目标。 我们的目标是展示自下而上的技术如何像生物学那样,通过在分子本身中嵌入信息和计算过程来创建复杂的原子定义结构。 在生物发展中,程序(基因组)使用生物化学来指导生长过程并确定有机体的最终形式。 在计算机科学的术语中,一个可以被编程来完成任何可以完成的任务的系统被称为“通用”系统。 通用计算机可以被编程来执行任何计算,而通用构造器可以被编程来执行任何构造任务。 最近的工作在理论上表明,通用的分子自组装是可能的,并已实验证明,该方法显示出希望,使用DNA作为构建材料,以创建功能分子设备,所谓的“DNA纳米技术”。 在这项提案中,我们的目标是使DNA纳米技术达到这样一个水平,即普遍的自下而上的自组装可以很好地实现,从而可以证明直接的技术应用。具体目标。我们的目标是在我们编程复杂的自组装逻辑的能力和我们将DNA结构与化学,光学和电子相关材料相结合的能力方面取得重大进展。我们将专注于四个主要目标,这些目标涵盖从长期基础工作到近期发展的范围:(1)复杂分子尺度电子电路模板的自组装;(2)编程分子行走马达的行为,以在纳米纤维任务中运输组件;(3)连接碳纳米管线以创建小型纳米电子电路;(4)将纳米纤维连接到纳米纤维上。以及(4)通过在具有功能性电接触的硅晶片上的目标位置处放置和定向自组装部件来集成自下而上和自上而下的制造。独特的是,这项研究的目标需要同时开发两种新型的计算系统:第一种是受生物自组装和发展的启发,在分子机器和生物化学水平上运行,第二种是由碳纳米管组装成纳米级电路,像传统的计算设备一样在电学水平上运行。该项目的一个重要方面将是培养能够跨越这项工作所涉及的跨学科学科的年轻科学家(本科生、研究生和博士后)。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bernard Yurke其他文献

DNA hybridization catalysts and molecular tweezers
DNA杂交催化剂和分子镊子
  • DOI:
    10.1090/dimacs/054/14
  • 发表时间:
    1999
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Turberfield;Bernard Yurke;A. P. Mills
  • 通讯作者:
    A. P. Mills
Input states for enhancement of fermion interferometer sensitivity.
  • DOI:
    10.1103/physrevlett.56.1515
  • 发表时间:
    1986-04
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Bernard Yurke
  • 通讯作者:
    Bernard Yurke
Wideband photon counting and homodyne detection.
Momentum noise in vacuum tunneling transducers.
真空隧道传感器中的动量噪声。
Using DNA to Power Nanostructures

Bernard Yurke的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bernard Yurke', 18)}}的其他基金

IDR: Self-Assembling Nanophotonic and Nanoelectronic Devices on DNA Nanobreadboards
IDR:DNA 纳米面包板上的自组装纳米光子和纳米电子器件
  • 批准号:
    1014922
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Nano: Collaborative Research: EMT : Toward Universal Bottom-Up Nanofabrication with DNA
纳米:合作研究:EMT:利用 DNA 实现通用自下而上的纳米加工
  • 批准号:
    0855212
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant

相似海外基金

Collaborative Research: A Metamodeling Machine Learning Framework for Multiscale Behavior of Nano-Architectured Crystalline-Amorphous Composites
协作研究:纳米结构晶体非晶复合材料多尺度行为的元建模机器学习框架
  • 批准号:
    2331482
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: A Metamodeling Machine Learning Framework for Multiscale Behavior of Nano-Architectured Crystalline-Amorphous Composites
协作研究:纳米结构晶体非晶复合材料多尺度行为的元建模机器学习框架
  • 批准号:
    2132336
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Waveguide-Integrated Graphene Nano-tweezERs (WIGNER) for rapid sorting and analysis of nanovesicles and viruses
合作研究:用于快速分选和分析纳米囊泡和病毒的波导集成石墨烯纳米镊子(WIGNER)
  • 批准号:
    2227460
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: NV-RGRA: Non-Volatile Nano-Second Right-Grained Reconfigurable Architecture for Data-Intensive Machine Learning and Graph Computing
合作研究:CNS 核心:小型:NV-RGRA:用于数据密集型机器学习和图计算的非易失性纳秒右粒度可重构架构
  • 批准号:
    2228239
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: ISS: Biofilm Inhibition with Germicidal Light Side-Emitted from Nano-enabled Flexible Optical Fibers in Water Systems
合作研究:ISS:水系统中纳米柔性光纤侧面发射的杀菌光抑制生物膜
  • 批准号:
    2224240
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Nano-Engineered Superwood for Resilient Foundation Systems
合作研究:用于弹性基础系统的纳米工程超级木材
  • 批准号:
    2120656
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Nano-Engineered Superwood for Resilient Foundation Systems
合作研究:用于弹性基础系统的纳米工程超级木材
  • 批准号:
    2120640
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Waveguide-Integrated Graphene Nano-tweezERs (WIGNER) for rapid sorting and analysis of nanovesicles and viruses
合作研究:用于快速分选和分析纳米囊泡和病毒的波导集成石墨烯纳米镊子(WIGNER)
  • 批准号:
    2227459
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: NV-RGRA: Non-Volatile Nano-Second Right-Grained Reconfigurable Architecture for Data-Intensive Machine Learning and Graph Computing
合作研究:CNS 核心:小型:NV-RGRA:用于数据密集型机器学习和图计算的非易失性纳秒右粒度可重构架构
  • 批准号:
    2228240
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: ISS: Biofilm Inhibition with Germicidal Light Side-Emitted from Nano-enabled Flexible Optical Fibers in Water Systems
合作研究:ISS:水系统中纳米柔性光纤侧面发射的杀菌光抑制生物膜
  • 批准号:
    2224449
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了