Collaborative Research: ISS: Biofilm Inhibition with Germicidal Light Side-Emitted from Nano-enabled Flexible Optical Fibers in Water Systems
合作研究:ISS:水系统中纳米柔性光纤侧面发射的杀菌光抑制生物膜
基本信息
- 批准号:2224449
- 负责人:
- 金额:$ 38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-10-01 至 2025-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Bacteria grow on surfaces as thin, slimy biofilms in nearly anything that contains water. Over 90% of microorganisms present in water exist within biofilms, compared to less than 10% in the flowing water. Biofilms can adversely impact water quality by harboring pathogens, such as Legionella pneumophila, that can be released back into water, or adversely impact water system operations (e.g., mediating surface corrosion, reducing heat transfer, clogging of valves or sensors). Biofilms exist and cause problems in medical devices, industrial manufacturing, and drinking water systems, including those upon which astronauts rely. For example, in the International Space Station, biofilm formation jeopardizes key equipment including spacesuits, water recycling units, radiators, and navigation windows. Chemical strategies to control biofilms require transport, storage and input of high-strength disinfecting solutions that may bring other problems. This project aims to understand and demonstrate how germicidal ultraviolet light delivered using nano fibers, which behave like “disinfecting glowsticks”, to surfaces where biofilms might grow. The germicidal ultraviolet light kills any bacteria that stick to or grow on a surface. Although the same types of bacteria grow on Earth and in the water systems on the International Space Station, the lack of gravity in space can influence how bacteria communities grow, providing key insights. The research team will conduct parallel experiments on Earth and on the International Space Station to understand if ultraviolet light influences biofilms differently because of gravity effects. Comparing biofilm growth and response to germicidal ultraviolet light in microgravity versus earth-gravity will enhance our ability to create healthy human habitats. The research team will work with high school students, explaining the roles of biofilms in everyday life through a four-part biofilm module. This module will be developed using chemical-free disinfection solutions enabled by nanotechnology.Currently, the sensitivity of biofilms to germicidal ultraviolet light in microgravity is unknown. This project involves the Center for the Advancement of Science in Space, the entity responsible for managing the International Space Station National Lab. Experiments will study effects of germicidal ultraviolet light (265 to 285 nanometers) on the inhibition of biofilms in water systems using five bacterial species that reportedly are present in biofilms in International Space Station water systems. First, the germicidal ultraviolet light biofilm inhibition experiments on the International Space Station will demonstrate impacts of germicidal light on biofilm formation on materials relevant to those used in International Space Station water systems. The feasibility of this approach as a chemical-free, long-duration biofilm control strategy in an extreme environment (microgravity) will be compared against otherwise identical ground controls on Earth. The influence of microgravity is important to understand since the growth and final density of some bacteria, and associated biofilm formation, can differ in microgravity, as compared to earth gravity. Second, experiments in a water-filled reactor equipped with side-emitting optical fibers decorated using different types of nanoparticles will be operated under earth-gravity to study the effects of two mechanisms (photolysis versus oxidation) to mitigate biofilm formation. Germicidal light is produced from mercury-free light emitting diodes, which enters unique nanotechnology enabled optical fibers that attach directly on surfaces and side-emit ultraviolet light. State of the art nanomaterial, chemical and biological methods and models will be applied to study biofilms. Duty-cycling of light emitting diode operation will be studied to reduce power requirements, and correspondingly the thermal load that requires management while achieving biofilm mitigation. The PIs will develop and apply quantitative polymerase chain reaction primers to identify each bacteria comprising the consortia for monitoring population levels. Additionally, the researchers will apply fluorescent viability stain with confocal microscopy plus image analysis to assess changes in biofilm viability and architecture upon ultraviolet light exposure. The broader impacts include developing a new four part biofilm module focusing on chemical free solutions enabled by nanotechnology, that will be co-developed and used with high school teachers and in public outreach activities. The project will advance the fundamental understanding of biocidal treatment efficiency in microgravity environments, where bacterial growth and biofilm formation can differ as compared to Earth. Comparing biofilm growth and response to UV-C light in microgravity versus earth-gravity will advance our ability to create healthy human habitats.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
细菌生长在几乎任何含水的物体表面,形成薄而粘稠的生物膜。水中90%以上的微生物存在于生物膜内,而在流动的水中这一比例不到10%。生物膜可以通过隐藏病原体(如嗜肺军团菌)对水质产生不利影响,这些病原体可以释放回水中,或者对水系统运行产生不利影响(例如,介导表面腐蚀,减少传热,堵塞阀门或传感器)。生物膜存在于医疗设备、工业制造和饮用水系统,包括宇航员赖以生存的系统中,并会造成问题。例如,在国际空间站,生物膜的形成危及关键设备,包括宇航服、水循环装置、散热器和导航窗。控制生物膜的化学策略需要运输、储存和输入可能带来其他问题的高强度消毒溶液。该项目旨在了解和演示如何使用纳米纤维将杀菌紫外线传递到生物膜可能生长的表面,纳米纤维的行为就像“消毒荧光棒”。杀菌紫外线可以杀死附着在物体表面或在物体表面生长的任何细菌。尽管在地球上和国际空间站的水系统中生长着相同类型的细菌,但太空中缺乏重力会影响细菌群落的生长方式,这提供了关键的见解。研究小组将在地球和国际空间站上进行平行实验,以了解紫外线是否会因为重力效应而对生物膜产生不同的影响。比较生物膜在微重力和地球重力下对杀菌紫外线的生长和反应,将增强我们创造健康人类栖息地的能力。研究小组将以高中生为对象,通过4个部分的生物膜模块,解释生物膜在日常生活中的作用。该模块将使用纳米技术实现的无化学消毒解决方案来开发。目前,生物膜在微重力环境下对杀菌紫外光的敏感性尚不清楚。该项目涉及负责管理国际空间站国家实验室的空间科学促进中心。实验将研究杀菌紫外光(265至285纳米)对水系统中生物膜的抑制作用,使用据报道存在于国际空间站水系统生物膜中的五种细菌。首先,在国际空间站上进行的杀菌紫外线生物膜抑制实验将展示杀菌光对国际空间站水系统中使用的相关材料生物膜形成的影响。这种方法作为一种在极端环境(微重力)下无化学物质、长时间生物膜控制策略的可行性将与地球上其他相同的地面控制方法进行比较。了解微重力的影响很重要,因为与地球重力相比,微重力下某些细菌的生长和最终密度以及相关的生物膜的形成可能有所不同。其次,在一个充满水的反应器中,用不同类型的纳米颗粒装饰侧面发射光纤,在地球重力下进行实验,研究两种机制(光解和氧化)对减缓生物膜形成的影响。杀菌光是由无汞发光二极管产生的,它进入独特的纳米技术光纤,直接附着在表面上,并侧面发射紫外线。最先进的纳米材料、化学和生物方法和模型将被应用于研究生物膜。将研究发光二极管工作的占空比,以降低功率要求,并相应地降低在实现生物膜缓解的同时需要管理的热负荷。pi将开发和应用定量聚合酶链反应引物来识别组成财团的每种细菌,以监测种群水平。此外,研究人员将使用荧光活力染色,共聚焦显微镜和图像分析来评估紫外线照射下生物膜活力和结构的变化。更广泛的影响包括开发一个新的四部分生物膜模块,侧重于纳米技术实现的无化学解决方案,这将与高中教师共同开发和使用,并用于公共宣传活动。该项目将推进对微重力环境下杀菌剂处理效率的基本理解,在微重力环境下,细菌的生长和生物膜的形成可能与地球不同。比较生物膜在微重力和地球重力下的生长和对UV-C光的反应将提高我们创造健康人类栖息地的能力。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Paul Westerhoff其他文献
Using radish (<em>Raphanus lativus</em> L.) germination to establish a benchmark dose for the toxicity of ozonated-petroleum byproducts in soil
- DOI:
10.1016/j.chemosphere.2022.137382 - 发表时间:
2023-02-01 - 期刊:
- 影响因子:
- 作者:
Burcu Yavuz;Brielle Januszewski;Tengfei Chen;Anca G. Delgado;Paul Westerhoff;Bruce Rittmann - 通讯作者:
Bruce Rittmann
Effect of electrolyte composition on electrocatalytic transformation of perfluorooctanoic acid (PFOA) in high pH medium
- DOI:
10.1016/j.chemosphere.2024.142879 - 发表时间:
2024-09-01 - 期刊:
- 影响因子:
- 作者:
Lama Saleh;Zunhui Lin;Mahmut S. Ersan;Christophe Coutanceau;Paul Westerhoff;Jean-Philippe Croué - 通讯作者:
Jean-Philippe Croué
Advanced oxidation processes may transform unknown PFAS in groundwater into known products.
高级氧化过程可能会将地下水中未知的 PFAS 转化为已知产品。
- DOI:
10.1016/j.chemosphere.2023.140865 - 发表时间:
2023 - 期刊:
- 影响因子:8.8
- 作者:
Mahmut S. Ersan;Bo Wang;Michael S. Wong;Paul Westerhoff - 通讯作者:
Paul Westerhoff
γ-Alsub2/subOsub3/sub selectively adsorbs transition group metals from contaminated waters to produce bi-metallic catalysts for efficient nitrate reduction
γ-氧化铝选择性地从污染水中吸附过渡族金属,以生产用于高效硝酸盐还原的双金属催化剂
- DOI:
10.1016/j.jhazmat.2025.138428 - 发表时间:
2025-08-05 - 期刊:
- 影响因子:11.300
- 作者:
Deokhwan Kim;Chung-Seop Lee;Byoung Guan Lee;Jaehyeong Park;Ki Chul Kim;Jong Kwon Choe;Paul Westerhoff;Hojung Rho - 通讯作者:
Hojung Rho
The phosphorus challenge: biotechnology approaches for a sustainable phosphorus system
磷挑战:实现可持续磷系统的生物技术方法
- DOI:
10.1016/j.copbio.2024.103197 - 发表时间:
2024-12-01 - 期刊:
- 影响因子:7.000
- 作者:
James J Elser;Douglas F Call;Jessica A Deaver;Owen W Duckworth;Brooke K Mayer;Eric McLamore;Bruce Rittmann;Maheen Mahmood;Paul Westerhoff - 通讯作者:
Paul Westerhoff
Paul Westerhoff的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Paul Westerhoff', 18)}}的其他基金
RAPID: Disinfection and Reuse of Health-Care Worker Facial Masks to Prevent Infection coronavirus disease
RAPID:对医护人员口罩进行消毒和重复使用,以预防感染冠状病毒
- 批准号:
2028074 - 财政年份:2020
- 资助金额:
$ 38万 - 项目类别:
Standard Grant
Sustainable Nanotechnology in the 2020's
2020年代的可持续纳米技术
- 批准号:
1936159 - 财政年份:2019
- 资助金额:
$ 38万 - 项目类别:
Standard Grant
Collaborative Research: An Integrated Approach to Understanding and Spatially Modeling Haloacetonitrile Disinfection By-Products Associated with De Facto Wastewater Reuse
合作研究:了解与实际废水再利用相关的卤代乙腈消毒副产物并对其进行空间建模的综合方法
- 批准号:
1804229 - 财政年份:2018
- 资助金额:
$ 38万 - 项目类别:
Standard Grant
Conference: Environmental Nanotechnology: Gordon Research Center and Gordon Research Seminar, June 20-21, 2015, Mount Snow Resort, West Dover, Vermont
会议:环境纳米技术:戈登研究中心和戈登研究研讨会,2015 年 6 月 20-21 日,佛蒙特州西多佛山雪山度假村
- 批准号:
1523256 - 财政年份:2015
- 资助金额:
$ 38万 - 项目类别:
Standard Grant
UNS:GOALI: Collaborative Research: Aquatic Fate and Toxicity of III-V Materials in the Presence of Nanoparticles Used in Industrial Polishing Processes
UNS:GOALI:合作研究:工业抛光过程中使用的纳米粒子存在下 III-V 族材料的水生命运和毒性
- 批准号:
1507750 - 财政年份:2015
- 资助金额:
$ 38万 - 项目类别:
Standard Grant
Nanoprospecting: An Approach Towards Environmental Monitoring of Engineered Nanomaterials
纳米勘探:工程纳米材料环境监测的方法
- 批准号:
1336542 - 财政年份:2013
- 资助金额:
$ 38万 - 项目类别:
Standard Grant
Conference: 2013 Environmental Nanotechnology GRC, Stove, VT, June 2 - 7, 2013
会议:2013 年环境纳米技术 GRC,佛蒙特州斯托夫,2013 年 6 月 2 日至 7 日
- 批准号:
1322232 - 财政年份:2013
- 资助金额:
$ 38万 - 项目类别:
Standard Grant
Photocatalytic Reduction of Nitrate in Water
光催化还原水中的硝酸盐
- 批准号:
1132779 - 财政年份:2011
- 资助金额:
$ 38万 - 项目类别:
Standard Grant
Pathway Generation and Byproduct Estimation for Chemical Oxidation Processes in Water Treatment
水处理中化学氧化过程的路径生成和副产物估算
- 批准号:
0607332 - 财政年份:2006
- 资助金额:
$ 38万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: ISS: Probing Interfacial Instabilities in Flow Boiling and Condensation via Acoustic Signatures in Microgravity
合作研究:ISS:通过微重力下的声学特征探测流动沸腾和冷凝中的界面不稳定性
- 批准号:
2323023 - 财政年份:2023
- 资助金额:
$ 38万 - 项目类别:
Standard Grant
Collaborative Research: ISS: Probing Interfacial Instabilities in Flow Boiling and Condensation via Acoustic Signatures in Microgravity
合作研究:ISS:通过微重力下的声学特征探测流动沸腾和冷凝中的界面不稳定性
- 批准号:
2323022 - 财政年份:2023
- 资助金额:
$ 38万 - 项目类别:
Standard Grant
Collaborative Research: ISS: Colloidal Microflyers: Observation and Characterization of (Self-)Thermophoresis through Air in Microgravity
合作研究:ISS:胶体微飞行器:微重力下空气(自)热泳的观察和表征
- 批准号:
2323011 - 财政年份:2023
- 资助金额:
$ 38万 - 项目类别:
Standard Grant
Collaborative Research: ISS: Understanding thermal transport across a condensing film by conducting experiments in microgravity
合作研究:国际空间站:通过微重力实验了解冷凝膜上的热传输
- 批准号:
2322929 - 财政年份:2023
- 资助金额:
$ 38万 - 项目类别:
Standard Grant
Collaborative Research: ISS: Colloidal Microflyers: Observation and Characterization of (Self-)Thermophoresis through Air in Microgravity
合作研究:ISS:胶体微飞行器:微重力下空气(自)热泳的观察和表征
- 批准号:
2323010 - 财政年份:2023
- 资助金额:
$ 38万 - 项目类别:
Standard Grant
Collaborative Research: ISS: Understanding thermal transport across a condensing film by conducting experiments in microgravity
合作研究:国际空间站:通过微重力实验了解冷凝膜上的热传输
- 批准号:
2322928 - 财政年份:2023
- 资助金额:
$ 38万 - 项目类别:
Standard Grant
Collaborative Research: ISS: Microgravity enabled studies of particle adsorption dynamics at fluid interfaces
合作研究:国际空间站:微重力支持流体界面颗粒吸附动力学的研究
- 批准号:
2224413 - 财政年份:2022
- 资助金额:
$ 38万 - 项目类别:
Standard Grant
Collaborative Research: ISS: Biofilm Inhibition with Germicidal Light Side-Emitted from Nano-enabled Flexible Optical Fibers in Water Systems
合作研究:ISS:水系统中纳米柔性光纤侧面发射的杀菌光抑制生物膜
- 批准号:
2224240 - 财政年份:2022
- 资助金额:
$ 38万 - 项目类别:
Standard Grant
Collaborative Research: ISS: Real-time Sensing of Extracellular Matrix Remodeling during Fibroblast Phenotype Switching and Vascular Network Formation in Wound Healing
合作研究:ISS:实时感知成纤维细胞表型转换和伤口愈合中血管网络形成过程中的细胞外基质重塑
- 批准号:
2126176 - 财政年份:2022
- 资助金额:
$ 38万 - 项目类别:
Standard Grant
Collaborative Research: ISS: Revealing interfacial stability, thermal transport and transient effects in film evaporation in microgravity
合作研究:ISS:揭示微重力下薄膜蒸发的界面稳定性、热传输和瞬态效应
- 批准号:
2224418 - 财政年份:2022
- 资助金额:
$ 38万 - 项目类别:
Standard Grant














{{item.name}}会员




