Collaborative Research: Geometry of Black Hole Entropy, Special Lagrangians, and Topological String Theory
合作研究:黑洞熵几何、特殊拉格朗日量和拓扑弦理论
基本信息
- 批准号:0628341
- 负责人:
- 金额:$ 13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-07-01 至 2008-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Black holes have fascinated physicists and mathematicians for half a century. Despite intensive research, they remain one of the most enigmatic objects in the universe. Many important theoretical breakthroughs in physics have resulted from attempts at a better understanding of the mysteries of black hole. Supersymmetric black holes arise from Calabi-Yau compactifications of string theory. A precise relation between topological string amplitudes (or Gromov-Witten invariants) of the Calabi-Witten computations were performed and found to be in complete agreement with the conjecture. It is proposed to provide the foundations of this new theory and greatly expand on these new connections between geometry and string theory, in the process enriching both fields. In the past few years a deep connection has been found between microscopic constituents of black holes and cycles with minimal volume inside manifolds. This connects puzzles of black holes to many mathematically interesting questions, including special Lagrangian submanifolds, holomorphic curves, etc. These are broadly known as topological strings. The project is an attempt to more deeply understand the link between topological strings and black holes. This will very likely have important ramifications both for physics and mathematics. The principal investigators have already made some of the pioneering investigations in this regard and with their active research groups are well equipped to carry out the proposed research.
半个世纪以来,黑洞一直让物理学家和数学家着迷。尽管进行了密集的研究,它们仍然是宇宙中最神秘的物体之一。物理学中许多重要的理论突破都是由于人们试图更好地理解黑洞的奥秘。超对称黑洞起源于弦理论的Calabi-Yau紧致化。给出了Calabi-Witten计算的拓扑弦振幅(或Gromov-Witten不变量)之间的精确关系,发现与猜想完全一致。建议提供这一新理论的基础,并在丰富这两个领域的过程中,极大地扩展几何和弦理论之间的这些新联系。在过去的几年里,人们发现黑洞的微观成分与流形内部体积最小的旋回之间存在着深刻的联系。这将黑洞的谜题与许多数学上有趣的问题联系在一起,包括特殊的拉格朗日子流形、全纯曲线等。这些问题被广泛地称为拓扑弦。该项目试图更深入地理解拓扑弦和黑洞之间的联系。这很可能会对物理学和数学产生重要的影响。首席调查人员已经在这方面进行了一些开创性的调查,他们的积极研究小组已经做好了开展拟议研究的准备。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Cumrun Vafa其他文献
BPS Quivers and Spectra of Complete $${\mathcal{N} = 2}$$ Quantum Field Theories
- DOI:
10.1007/s00220-013-1789-8 - 发表时间:
2013-08-18 - 期刊:
- 影响因子:2.600
- 作者:
Murad Alim;Sergio Cecotti;Clay Córdova;Sam Espahbodi;Ashwin Rastogi;Cumrun Vafa - 通讯作者:
Cumrun Vafa
CP violation and F-theory GUTs
- DOI:
10.1016/j.physletb.2010.10.034 - 发表时间:
2011-01-03 - 期刊:
- 影响因子:
- 作者:
Jonathan J. Heckman;Cumrun Vafa - 通讯作者:
Cumrun Vafa
On the origin and fate of our universe
- DOI:
10.1007/s10714-025-03353-w - 发表时间:
2025-01-20 - 期刊:
- 影响因子:2.800
- 作者:
Cumrun Vafa - 通讯作者:
Cumrun Vafa
Cumrun Vafa的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Cumrun Vafa', 18)}}的其他基金
Interactions of Particles, Fields, and Strings
粒子、场和弦的相互作用
- 批准号:
2013858 - 财政年份:2020
- 资助金额:
$ 13万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Topological Invariants and Matrix Models
FRG:协作研究:拓扑不变量和矩阵模型
- 批准号:
0244464 - 财政年份:2003
- 资助金额:
$ 13万 - 项目类别:
Standard Grant
Collaborative Research: The Geometry of Duality in Mathematics and Physics
合作研究:数学和物理中的对偶几何
- 批准号:
0074329 - 财政年份:2000
- 资助金额:
$ 13万 - 项目类别:
Standard Grant
Travel for U.S. Participants to 2nd International Colloquim on Modern Quantam Field Theory, TIFR, Bombay, Jan.5-11, 1994, Award in Indian and U.S. Currency
美国参与者前往参加第二届现代量子场论国际学术研讨会,TIFR,孟买,1994 年 1 月 5 日至 11 日,以印度和美元货币颁发奖项
- 批准号:
9312241 - 财政年份:1993
- 资助金额:
$ 13万 - 项目类别:
Standard Grant
Presidential Young Investigator Award: Research on String and Conformal Field Theories
总统青年研究员奖:弦与共形场论研究
- 批准号:
8957162 - 财政年份:1989
- 资助金额:
$ 13万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Preparing Future Middle and High School Mathematics Teachers to Lead Productive Geometry Discussions using Web-Based Dynamic Geometry Technology Tools
合作研究:帮助未来初中和高中数学教师使用基于网络的动态几何技术工具引导富有成效的几何讨论
- 批准号:
2235338 - 财政年份:2023
- 资助金额:
$ 13万 - 项目类别:
Standard Grant
Collaborative Research: Preparing Future Middle and High School Mathematics Teachers to Lead Productive Geometry Discussions using Web-Based Dynamic Geometry Technology Tools
合作研究:帮助未来初中和高中数学教师使用基于网络的动态几何技术工具引导富有成效的几何讨论
- 批准号:
2235393 - 财政年份:2023
- 资助金额:
$ 13万 - 项目类别:
Standard Grant
Collaborative Research: Derived Categories in Birational Geometry, Enumerative Geometry, and Non-commutative Algebra
合作研究:双有理几何、枚举几何和非交换代数中的派生范畴
- 批准号:
2302262 - 财政年份:2023
- 资助金额:
$ 13万 - 项目类别:
Standard Grant
Collaborative Research: Derived Categories in Birational Geometry, Enumerative Geometry, and Non-commutative Algebra
合作研究:双有理几何、枚举几何和非交换代数中的派生范畴
- 批准号:
2302263 - 财政年份:2023
- 资助金额:
$ 13万 - 项目类别:
Standard Grant
Collaborative Research: SCH: Geometry and Topology for Interpretable and Reliable Deep Learning in Medical Imaging
合作研究:SCH:医学成像中可解释且可靠的深度学习的几何和拓扑
- 批准号:
2205417 - 财政年份:2022
- 资助金额:
$ 13万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Medium: Foundations of Robust Deep Learning via Data Geometry and Dyadic Structure
合作研究:CIF:媒介:通过数据几何和二元结构实现稳健深度学习的基础
- 批准号:
2212325 - 财政年份:2022
- 资助金额:
$ 13万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-BSF: Equivariant Symplectic Geometry
合作研究:NSF-BSF:等变辛几何
- 批准号:
2204359 - 财政年份:2022
- 资助金额:
$ 13万 - 项目类别:
Standard Grant
Collaborative Research: NSF-BSF: Equivariant Symplectic Geometry
合作研究:NSF-BSF:等变辛几何
- 批准号:
2204360 - 财政年份:2022
- 资助金额:
$ 13万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Higher Categorical Structures in Algebraic Geometry
FRG:合作研究:代数几何中的更高范畴结构
- 批准号:
2152235 - 财政年份:2022
- 资助金额:
$ 13万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Matroids, Graphs, and Algebraic Geometry
FRG:协作研究:拟阵、图和代数几何
- 批准号:
2229915 - 财政年份:2022
- 资助金额:
$ 13万 - 项目类别:
Standard Grant