Inducing Features from Visual Noise using Statistical Machine Learning Techniques
使用统计机器学习技术从视觉噪声中归纳特征
基本信息
- 批准号:0631602
- 负责人:
- 金额:$ 15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-11-15 至 2010-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Understanding how humans differentiate between visual objects is a central problem for psychologists who want to understand the visual system and for computer scientists who want to emulate its abilities. Previous work has developed techniques for determining the image locations and spatial frequencies most responsible for human performance in classification and identification tasks. These techniques, however, cannot tell us if the important image features are detected in a single step, for example, by matching the visual object to a single internal representation such as a template, or by combining the result of multiple detectors. With support from the National Science Foundation, Dr. Andrew Cohen from the University of Massachusetts, Amherst, will develop a new model, the Multiple Independent Template Induction Model (MITIM), designed to answer such questions.Human behavioral experiments on tasks such as word recognition in noisy images have suggested that people do not always recognize objects holistically. Rather, they appear detect pieces independently and then combine those results. If this is true in domains such as face or object classification and recognition, understanding these abilities requires knowledge of the independently detected parts and their relative importance. The proposed MITIM algorithm will use statistical techniques from artificial intelligence research to process human image classification data and discover the independent templates used in object recognition. The insights gained will help illuminate human visual performance and help scientists and engineers better understand how to build computer systems that can replicate that performance, functionality that is increasingly important in web search, robotic, and security applications.This award was supported as part of the fiscal year 2006 Mathematical Sciences priority area special competition on Mathematical Social and Behavioral Sciences (MSBS).
对于想要了解视觉系统的心理学家和想要模拟其能力的计算机科学家来说,了解人类如何区分视觉对象是一个核心问题。以前的工作已经开发了用于确定图像位置和空间频率的技术,这些位置和频率对人类在分类和识别任务中的表现最为重要。然而,这些技术不能告诉我们重要的图像特征是否在单个步骤中被检测到,例如,通过将视觉对象与单个内部表示(例如模板)进行匹配,或者通过组合多个检测器的结果。在美国国家科学基金会的支持下,来自马萨诸塞州大学阿默斯特分校的安德鲁·科恩博士将开发一种新的模型,即多独立模板归纳模型(MITIM),旨在回答这些问题。在嘈杂图像中进行的单词识别等任务的人类行为实验表明,人们并不总是全面地识别物体。相反,它们似乎独立地检测片段,然后联合收割机将这些结果结合起来。如果这在人脸或物体分类和识别等领域是真的,那么理解这些能力需要了解独立检测到的部分及其相对重要性。拟议的MITIM算法将使用人工智能研究中的统计技术来处理人类图像分类数据,并发现用于对象识别的独立模板。获得的见解将有助于阐明人类的视觉性能,并帮助科学家和工程师更好地了解如何建立计算机系统,可以复制的性能,功能是越来越重要的网络搜索,机器人和安全应用程序。这一奖项是作为2006财政年度数学科学优先领域的数学社会和行为科学(MSBS)特别竞争的一部分。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew Cohen其他文献
PD31-10 STATIN INTAKE REDUCES KIDNEY STONE FORMATION
- DOI:
10.1016/j.juro.2016.02.554 - 发表时间:
2016-04-01 - 期刊:
- 影响因子:
- 作者:
Andrew Cohen;Melanie Adamsky;Charles Nottingham;Jaclyn Pruitt;Brittany Lapin;Sangtae Park - 通讯作者:
Sangtae Park
PD52-06 DISPARITIES IN UTILIZATION OF INFLATABLE PENILE PROSTHESIS FOR TREATMENT OF POST-PROSTATECTOMY ERECTILE DYSFUNCTION
- DOI:
10.1016/j.juro.2018.02.2358 - 发表时间:
2018-04-01 - 期刊:
- 影响因子:
- 作者:
William Boysen;Andrew Cohen;Kristine Kuchta;Jaclyn Milose - 通讯作者:
Jaclyn Milose
Market Structure and Market Definition: The Case of Small Market Banks and Thrifts
市场结构和市场定义:小型市场银行和储蓄机构的案例
- DOI:
10.2139/ssrn.512982 - 发表时间:
2004 - 期刊:
- 影响因子:0
- 作者:
Andrew Cohen - 通讯作者:
Andrew Cohen
MP67-12 BISPHOSPHONATES DO NOT REDUCE RISK OF NEW KIDNEY STONE FORMATION
- DOI:
10.1016/j.juro.2016.02.1328 - 发表时间:
2016-04-01 - 期刊:
- 影响因子:
- 作者:
Charles Nottingham;Jaclyn Pruitt;Brittany Lapin;Andrew Cohen;Chi-Hsiung Wang;Sangtae Park - 通讯作者:
Sangtae Park
MP19-13 WIDE VARIATION IN RADIATION DOSE DURING COMPUTERIZED TOMOGRAPHY
- DOI:
10.1016/j.juro.2016.02.2761 - 发表时间:
2016-04-01 - 期刊:
- 影响因子:
- 作者:
Andrew Cohen;Katie Hughes;Natalie Fahey;Brandon Caldwell;Chi-Hsiung Wang;Sangtae Park - 通讯作者:
Sangtae Park
Andrew Cohen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrew Cohen', 18)}}的其他基金
REU Site: From the Clouds to the Core: A Place-Based REU for Southwestern US Community/Tribal College Students to Increase Under-Represented Group Recruitment to the Geosciences
REU 网站:从云端到核心:为美国西南部社区/部落大学生提供基于地点的 REU,以增加地球科学领域代表性不足群体的招聘
- 批准号:
2149572 - 财政年份:2022
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Collaborative Research: BoCP-Implementation: The impact of climate change on functional biodiversity across spatiotemporal scales at Lake Tanganyika, Africa
合作研究:BoCP-实施:气候变化对非洲坦噶尼喀湖跨时空尺度功能性生物多样性的影响
- 批准号:
2224887 - 财政年份:2022
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Collaborative Research: Reconstructing the Origins of the Colorado River: An Integrative Study of the Miocene-Pliocene Bouse Formation
合作研究:重建科罗拉多河的起源:中新世-上新世布斯地层的综合研究
- 批准号:
1545998 - 财政年份:2016
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Operations Support For Continental Scientific Drilling Workshops
大陆科学钻探车间的运营支持
- 批准号:
1265197 - 财政年份:2013
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
FESD Type I: Earth System Dynamics and its Role in Human Evolution in Africa
FESD I 型:地球系统动力学及其在非洲人类进化中的作用
- 批准号:
1338553 - 财政年份:2013
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Collaborative Research: The Hominid Sites And Paleolakes Drilling Project: Acquiring a High Resolution Paleoenvironmental Context of Human Evolution
合作研究:原始人类遗址和古湖泊钻探项目:获取人类进化的高分辨率古环境背景
- 批准号:
1123000 - 财政年份:2012
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
IPG: Collaborative Research: A high-resolution analysis of unique paleoenvironmental data from key hominin sites in East Africa
IPG:合作研究:对东非主要古人类遗址的独特古环境数据进行高分辨率分析
- 批准号:
1241859 - 财政年份:2012
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
SGER: Scientific Drilling for Human Origins: Exploring the Application of Drill Core Records to Understanding Hominin Evolution
SGER:人类起源的科学钻探:探索钻芯记录在了解古人类进化中的应用
- 批准号:
0725553 - 财政年份:2007
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Stratigraphy and sedimentology of South American foreland basin lakes: Keys to deciphering climatic and tectonic controls on lacustrine deposition in ancient foreland basins
南美前陆盆地湖泊的地层学和沉积学:破译古代前陆盆地湖泊沉积的气候和构造控制的关键
- 批准号:
0542993 - 财政年份:2006
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Programs on Critical Problems in Physics, Astrophysics and Biophysics at the Aspen Center for Physics
阿斯彭物理中心物理学、天体物理学和生物物理学关键问题项目
- 批准号:
0602228 - 财政年份:2006
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
相似海外基金
Collaborative Research: SaTC: CORE: Small: Understanding how visual features of misinformation influence credibility perceptions
协作研究:SaTC:核心:小:了解错误信息的视觉特征如何影响可信度认知
- 批准号:
2150723 - 财政年份:2022
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Representation of attentional priority for visual features in the human brain
人脑视觉特征的注意力优先级表示
- 批准号:
10440619 - 财政年份:2022
- 资助金额:
$ 15万 - 项目类别:
Representation and integration of diverse visual features in circuits and behavior
电路和行为中不同视觉特征的表示和整合
- 批准号:
10368451 - 财政年份:2022
- 资助金额:
$ 15万 - 项目类别:
Representation of attentional priority for visual features in the human brain
人脑视觉特征的注意力优先级表示
- 批准号:
10707522 - 财政年份:2022
- 资助金额:
$ 15万 - 项目类别:
Alignment of visual features in binocular cortical circuits through experience dependent synaptic plasticity
通过经验依赖的突触可塑性调整双眼皮层回路中的视觉特征
- 批准号:
10534839 - 财政年份:2022
- 资助金额:
$ 15万 - 项目类别:
Features and Objects in the Visual System
视觉系统中的特征和对象
- 批准号:
RGPIN-2016-05296 - 财政年份:2022
- 资助金额:
$ 15万 - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: SaTC: CORE: Small: Understanding how visual features of misinformation influence credibility perceptions
协作研究:SaTC:核心:小:了解错误信息的视觉特征如何影响可信度认知
- 批准号:
2150716 - 财政年份:2022
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Representation and integration of diverse visual features in circuits and behavior
电路和行为中不同视觉特征的表示和整合
- 批准号:
10569578 - 财政年份:2022
- 资助金额:
$ 15万 - 项目类别:
Testing the role of learned regularities in visual working memory: The nature of chunking for continuous visual features
测试学习规律在视觉工作记忆中的作用:连续视觉特征的组块本质
- 批准号:
2141189 - 财政年份:2022
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Causal testing of the role of a place code for global-scale visual features in primate V1 using patterned optogenetics
使用图案光遗传学对灵长类动物 V1 中全球范围视觉特征的位置代码的作用进行因果测试
- 批准号:
10513805 - 财政年份:2021
- 资助金额:
$ 15万 - 项目类别: