Representation of attentional priority for visual features in the human brain
人脑视觉特征的注意力优先级表示
基本信息
- 批准号:10440619
- 负责人:
- 金额:$ 36.83万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-30 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:AffectAlzheimer&aposs DiseaseAnatomyArchitectureAreaAttentionAttention Deficit DisorderAttention deficit hyperactivity disorderAttentional deficitAuditoryAutomobile DrivingBasic ScienceBehaviorBehavioralBiological ModelsBrainCategoriesCharacteristicsClinical ResearchCodeComplementComputer ModelsData AnalyticsDiagnosisDimensionsDiseaseDissociationDorsalEnvironmentFoundationsFunctional Magnetic Resonance ImagingGoalsHealthHumanImpairmentInfluentialsLiteratureLocationMeasuresMediatingMethodologyMethodsMissionModelingNatureNeuropsychologyNeurosciences ResearchPerceptionPopulationProcessPropertyPsychophysicsRadiology SpecialtyReadingResearchResearch Project GrantsResolutionRoleScanningSelection CriteriaSignal TransductionSocial InteractionStimulusStimulus Deprivation-Induced AmblyopiaStrokeStructureTechniquesTestingTheoretical StudiesTimeVariantVisualVisual PerceptionVisual attentionVisual system structureWorkadvanced analyticsautism spectrum disorderbasecognitive controlcognitive neurosciencefeature selectioninformation processinginnovationinsightmultimodalityneglectnervous system disorderneuroimagingneuromechanismneurotransmissionnovelrelating to nervous systemresponsescreeningselective attentionsomatosensorysupport networktheoriesvisual informationvisual stimulus
项目摘要
PROJECT SUMMARY
The environment contains far more information than the brain can process at once. Visual attention
helps us cope with such information overload by selectively processing relevant information. In many
situations, humans need to select arbitrary features in a scene. Theories of attention have proposed
that such selection is mediated by a priority representation that encodes the relative importance of
each visual stimulus in the scene. However, much remains unknown regarding how the brain
computes and maintains attentional priority for features. Our long-term goal is to understand how the
brain selects different types of information via population neural activity to serve goal-directed
behavior. In this project, we will examine the neural basis of two basic properties of feature attention:
its resolution and capacity. We hypothesize that distinct areas in the dorsal frontoparietal network
encode priority information with different resolution and capacity limit, supported by distinct neural
population activity profiles. We will test this overall hypothesis by pursuing three specific aims. First,
we will establish functional specializations in frontoparietal areas in representing feature priority with
different levels of resolution. Second, we will examine the nature of priority signals that gives rise to
the capacity limit in attending to multiple stimuli. Third, we will quantify the dimensionality of priority
signals and examine how neural dimensionality determines the resolution and capacity of the priority
representation. The proposed research is expected to significantly advance our understanding of how
the brain selects visual features, in terms of the neural machinery and computational principles that
enable such selection. A deeper understanding of how the brain selects visual features will provide
important constraints for theories and models of attention and can potentially transform our
understanding of visual information processing and cognitive control. The research project is
innovative both in terms of conceptual and methodological advances. Conceptually, the project will
test novel hypotheses regarding the functional dissociations in frontoparietal cortex and the
underlying computational principles of neural coding. Methodologically, the project employs a multi-
modal approach including behavioral, neuroimaging, and neuroperturbation techniques,
complemented by advanced data analytical and computational modeling methods, to gain
fundamental insights into the brain mechanisms of visual attention.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Taosheng Liu其他文献
Taosheng Liu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Taosheng Liu', 18)}}的其他基金
Representation of attentional priority for visual features in the human brain
人脑视觉特征的注意力优先级表示
- 批准号:
10707522 - 财政年份:2022
- 资助金额:
$ 36.83万 - 项目类别:
Neural mechanism of preference formation during risky decisions
风险决策过程中偏好形成的神经机制
- 批准号:
8445740 - 财政年份:2013
- 资助金额:
$ 36.83万 - 项目类别:
Neural mechanisms of attentional priority for visual features and objects
视觉特征和物体注意优先的神经机制
- 批准号:
8346020 - 财政年份:2012
- 资助金额:
$ 36.83万 - 项目类别:
Neural mechanisms of attentional priority for visual features and objects
视觉特征和物体注意优先的神经机制
- 批准号:
8675258 - 财政年份:2012
- 资助金额:
$ 36.83万 - 项目类别:
Neural mechanisms of attentional priority for visual features and objects
视觉特征和物体注意优先的神经机制
- 批准号:
8502510 - 财政年份:2012
- 资助金额:
$ 36.83万 - 项目类别:














{{item.name}}会员




