SGER: Detailed Interaction of Dislocations and Grain Boundaries in Nanoscale Gold Bicrystals

SGER:纳米级金双晶体中位错和晶界的详细相互作用

基本信息

  • 批准号:
    0650555
  • 负责人:
  • 金额:
    $ 8.96万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2006
  • 资助国家:
    美国
  • 起止时间:
    2006-12-15 至 2007-11-30
  • 项目状态:
    已结题

项目摘要

TECHNICAL: The ultimate goal of the experimental capability herein is to quantify individual interactions between dislocations and grain boundaries. The PI and coworkers have developed the ability to measure mechanical properties of freestanding gold nanocrystals of dimensions 100 nm x 250 nm x 7 micron using a deflection method based upon a nanoindenter. The method induces both a tensile and a bending load in the specimen. The experiments suggest that the tensile stress necessary to cause plastic deformation in the nanocrystals is as high as 500 MPa, which is two orders of magnitude higher than that for bulk single crystals. The detailed behavior of individual dislocations cannot be measured with the current experimental capabilities, though. The thrust of this SGER is to extend the experimental capability, which the PI and coworkers have developed in order use a microelectromechanical (MEMS) device to apply a pure tensile force to the nanocrystals. This will significantly simplify the interpretation of the experiments. In addition, the MEMS device will operate in electron microscopes in order to precisely quantify the overall deformation, localization of plastic slip as well as the behavior of individual dislocations under well defined loading states. This experimental capability will be amenable to testing individual bicrystals at the nanoscale in order to observe and quantify directly the interactions between dislocations and grain boundaries. This research is exploratory and high risk in that the development of the experimental MEMS loading fixture will be fraught with difficulties and success is uncertain. The potential high payoff reward of this transformative, yet high risk research is the ability to bridge the gap between experiment and theory/simulation at the nanoscale that would allow for direct validation of concepts and models at the smallest length scales of multiscale models. The enhanced robustness of the model would then cascade out to the larger length scales. NON-TECHNICAL: Multiscale modeling of materials has revolutionized the way engineers and scientists think about understanding material properties as well as designing materials with specific properties. The potential of multiscale simulations is yet unfulfilled in part because of a lack of concomitant experimental guidance and validation. In order to establish a one-to-one comparison between experiment and theory/simulation it is necessary that numerical simulations become less ideal and that experiments become more ideal until the defined geometry, loading conditions, strain rates and measured variables are the same. Many phenomena considered in the simulations have perhaps never been measured or have never been quantified with sufficient accuracy, including geometrically necessary dislocation density, dislocation interactions in small volumes, as well as dislocation interactions with grain boundaries. Of critical importance is to develop experiments that have a controlled geometry and a known set of very small dimensions. This research includes validated physics-based material models, which have a true predictive capability. This would significantly shorten the product development of new metal alloys with enhanced strength and toughness. In addition, one graduate student and an undergraduate student will be involved in this high-risk, high payoff, transformative research.
技术:实验能力的最终目标是量化位错和晶界之间的相互作用。PI及其同事已经开发出使用基于纳米压痕仪的偏转方法测量尺寸为100 nm x 250 nm x 7微米的独立式金纳米晶体的机械性能的能力。该方法在试样中引入拉伸和弯曲载荷。实验表明,在纳米晶体中引起塑性变形所需的拉伸应力高达500 MPa,这比大块单晶高两个数量级。然而,以目前的实验能力,无法测量单个位错的详细行为。该SGER的主旨是扩展PI及其同事开发的实验能力,以便使用微机电(MEMS)设备向纳米晶体施加纯张力。这将大大简化实验的解释。此外,MEMS器件将在电子显微镜下工作,以精确量化整体变形、塑性滑移的局部化以及在明确定义的加载状态下单个位错的行为。这种实验能力将适合于在纳米尺度上测试单个双晶,以便直接观察和量化位错和晶界之间的相互作用。这项研究是探索性的和高风险的实验MEMS加载夹具的发展将充满困难和成功是不确定的。这种变革性的高风险研究的潜在高回报是能够弥合纳米级实验与理论/模拟之间的差距,从而能够在多尺度模型的最小长度尺度上直接验证概念和模型。模型的增强的鲁棒性然后将级联到更大的长度尺度。非技术性:材料的多尺度建模彻底改变了工程师和科学家理解材料特性以及设计具有特定特性的材料的方式。 多尺度模拟的潜力尚未实现,部分原因是缺乏相应的实验指导和验证。为了在实验和理论/模拟之间建立一对一的比较,数值模拟必须变得不太理想,而实验必须变得更加理想,直到定义的几何形状、加载条件、应变率和测量变量相同。在模拟中考虑的许多现象可能从未被测量或从未被足够精确地量化,包括几何上必要的位错密度、小体积中的位错相互作用以及位错与晶界的相互作用。至关重要的是开发具有受控几何形状和已知的一组非常小的尺寸的实验。这项研究包括经过验证的基于物理的材料模型,具有真正的预测能力。这将大大缩短具有增强强度和韧性的新金属合金的产品开发。此外,一名研究生和一名本科生将参与这项高风险、高回报、变革性的研究。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jeffrey Kysar其他文献

Jeffrey Kysar的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jeffrey Kysar', 18)}}的其他基金

Strength and Reliability of Graphene Produced Using Industrially Scalable Methods
使用工业可扩展方法生产的石墨烯的强度和可靠性
  • 批准号:
    1437450
  • 财政年份:
    2014
  • 资助金额:
    $ 8.96万
  • 项目类别:
    Standard Grant
GOALI/Collaborative Research: Improving the Performance of Electrical Connectors Using Extremely Thin Sheets of Graphene Sandwiched Between Metal Layers
GOALI/合作研究:使用夹在金属层之间的极薄石墨烯片来提高电连接器的性能
  • 批准号:
    1363093
  • 财政年份:
    2014
  • 资助金额:
    $ 8.96万
  • 项目类别:
    Standard Grant
Probability Density Function of Dislocation Free Path Length: Experimental Determination through GND Measurements
位错自由路径长度的概率密度函数:通过 GND 测量进行实验确定
  • 批准号:
    1310503
  • 财政年份:
    2013
  • 资助金额:
    $ 8.96万
  • 项目类别:
    Standard Grant
Monoatomically Thin Films: Nonlinear Mechanical Response and Mechanical-Electrical Coupling
单原子薄膜:非线性机械响应和机电耦合
  • 批准号:
    0927891
  • 财政年份:
    2009
  • 资助金额:
    $ 8.96万
  • 项目类别:
    Standard Grant
Nanoporous Metals Incorporated into MEMS and NEMS Devices for Enhanced Functionality
将纳米多孔金属纳入 MEMS 和 NEMS 器件以增强功能
  • 批准号:
    0826093
  • 财政年份:
    2008
  • 资助金额:
    $ 8.96万
  • 项目类别:
    Standard Grant
Experimental Characterization of Gold Single Crystals and Bicrystals at the Nanoscale with Emphasis on Interaction Between Dislocations and Grain Boundaries
纳米级金单晶和双晶的实验表征,重点是位错和晶界之间的相互作用
  • 批准号:
    0706058
  • 财政年份:
    2007
  • 资助金额:
    $ 8.96万
  • 项目类别:
    Continuing Grant
Effects of Heterogeneity, Anisotropy and Length Scale Effects in Microscale Deformation Processes
微尺度变形过程中非均质性、各向异性和长度尺度效应的影响
  • 批准号:
    0500239
  • 财政年份:
    2005
  • 资助金额:
    $ 8.96万
  • 项目类别:
    Standard Grant
CAREER: Multi-Scale Experiments of Fracture in Elastic-Plastic Materials
职业:弹塑性材料断裂的多尺度实验
  • 批准号:
    0134226
  • 财政年份:
    2002
  • 资助金额:
    $ 8.96万
  • 项目类别:
    Standard Grant

相似海外基金

INTEGRATED RESEARCH ON LAND-ATMOSPHERE INTERACTION BY CLOUD RESOLVINGMODEL AND DETAILED LAND SURFACE PARAMETERS
基于云解析模型和详细地表参数的地气相互作用综合研究
  • 批准号:
    22246066
  • 财政年份:
    2010
  • 资助金额:
    $ 8.96万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
EAGER: Detailed 40Ar/39Ar geochronology of deformed diamictite to quantify strain rates and timing relations of fluid-rock interaction
EAGER:变形混积岩的详细 40Ar/39Ar 地质年代学,用于量化流体-岩石相互作用的应变率和时间关系
  • 批准号:
    1048393
  • 财政年份:
    2010
  • 资助金额:
    $ 8.96万
  • 项目类别:
    Standard Grant
Detailed study of low energy neutrino interaction
低能中微子相互作用的详细研究
  • 批准号:
    22340055
  • 财政年份:
    2010
  • 资助金额:
    $ 8.96万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Detailed mapping of the sites of interaction of polypyrimidine tract binding protein with its RNA targets: viral and cellular IRESs and pre-mRNAs.
聚嘧啶束结合蛋白与其 RNA 靶标(病毒和细胞 IRES 和前 mRNA)相互作用位点的详细图谱。
  • 批准号:
    BB/E004857/1
  • 财政年份:
    2007
  • 资助金额:
    $ 8.96万
  • 项目类别:
    Research Grant
A detailed study of the interaction between fluorescence and nanostructure in naturally evolved photonic systems
自然演化光子系统中荧光与纳米结构之间相互作用的详细研究
  • 批准号:
    BB/E000177/1
  • 财政年份:
    2007
  • 资助金额:
    $ 8.96万
  • 项目类别:
    Research Grant
Detailed Image Analysis of Vortex-Flame Interaction under Acoustic Excitation of Coherent Structure Characterized by Geometrical Configuration
几何构型相干结构声激励下涡旋-火焰相互作用的详细图像分析
  • 批准号:
    18560197
  • 财政年份:
    2006
  • 资助金额:
    $ 8.96万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
DETAILED ANALYSIS OF P21/CDK2 INTERACTION
P21/CDK2 相互作用的详细分析
  • 批准号:
    2712741
  • 财政年份:
    1997
  • 资助金额:
    $ 8.96万
  • 项目类别:
DETAILED ANALYSIS OF P21/CDK2 INTERACTION
P21/CDK2 相互作用的详细分析
  • 批准号:
    2008946
  • 财政年份:
    1997
  • 资助金额:
    $ 8.96万
  • 项目类别:
DETAILED ANALYSIS OF P21/CDK2 INTERACTION
P21/CDK2 相互作用的详细分析
  • 批准号:
    2895348
  • 财政年份:
    1997
  • 资助金额:
    $ 8.96万
  • 项目类别:
DETAILED ANALYSIS OF P21/CDK2 INTERACTION
P21/CDK2 相互作用的详细分析
  • 批准号:
    6172790
  • 财政年份:
    1997
  • 资助金额:
    $ 8.96万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了