Miscible Hele-Shaw Displacements: A Three-Dimensional Framework Based on the Stokes Equations

混相 Hele-Shaw 位移:基于 Stokes 方程的三维框架

基本信息

  • 批准号:
    0651498
  • 负责人:
  • 金额:
    $ 24万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-07-01 至 2011-06-30
  • 项目状态:
    已结题

项目摘要

CBET - 0651498 E. Meiburg, University of California-Santa BarbaraThis research establishes a new framework for analyzing unstable miscible displacements under the influence of flow-induced dispersion. This framework, based on the three-dimensional Stokes equations, employs both nonlinear simulations as well as computational linear stability analyses. It thus supersedes the common but questionable approach of augmenting the lower-dimensional Darcy equations with simplified dispersion models of limited validity.To establish this framework, the research focuses on the Hele-Shaw geometry frequently employed in experimental studies of unstable displacements. This geometry is relevant to numerous application areas, from lubrication problems, bearing flows, and oil displacements in fractured rocks, to small-scale MEMS devices. Variable density displacements are addressed with arbitrary angles between the nominal flow direction and the gravity vector, as are chemical reactions. The results from the Stokes investigation are subsequently employed to formulate improved Darcy-based dispersion models capable of capturing the effects of flow-induced dispersion in the Hele-Shaw geometry. In this way, this investigation contributes broadly towards advancing the understanding of the influence of flow-induced dispersion on miscible displacements.Intellectual merit: Two- and three-dimensional, high-resolution Stokes flow simulations combined with computational linear stability analyses provide a powerful set of tools for studying the complex physics of unstable miscible displacements, and in particular how these are affected by flow-induced dispersion. They go significantly beyond the Darcy-based analyses common to date, which have to be augmented by empirical dispersion models. The new framework is employed to establish the limitations of the Hele-Shaw/Darcy analogy, and to generate the Hele-Shaw counterparts of a wide range of Darcy results.Broader impact: The advanced understanding of flow-induced dispersion effects resulting from the proposed work enhances predictive capabilities for transport processes in porous media, and it aids in the design and optimization of a variety of flow processes of importance to the oil and chemical industries. Furthermore, the project will educate and train undergraduate and graduate students in the concepts of large-scale numerical simulations and will benefit from their association with an ongoing IGERT program in Computational Science and Engineering at UCSB.
CBET - 0651498 E. Meiburg,University of California-Santa Barbara本研究建立了一个新的框架来分析流动诱导弥散影响下的不稳定混相驱。这个框架,三维斯托克斯方程的基础上,采用非线性模拟以及计算线性稳定性分析。因此,它取代了常见的,但有问题的方法,增加低维达西方程与简化的色散模型的有限validity.To建立这个框架,研究的重点是Hele-Shaw几何经常采用的不稳定位移的实验研究。这种几何形状与许多应用领域有关,从润滑问题,轴承流动和断裂岩石中的油位移到小规模MEMS器件。变密度位移与标称流动方向和重力矢量之间的任意角度进行处理,如化学反应。斯托克斯调查的结果,随后制定改进的达西为基础的色散模型能够捕捉到的影响,在Hele-Shaw几何形状的流动诱导的色散。通过这种方式,这项调查有助于广泛推进流动诱导的分散对混相displacement.Intellectual优点的影响的理解:二维和三维,高分辨率斯托克斯流模拟与计算线性稳定性分析相结合,提供了一个强大的工具,用于研究不稳定混相位移的复杂物理,特别是这些是如何受到流动诱导的分散。他们远远超出了达西为基础的分析常见的日期,这必须由经验色散模型增强。新的框架被用来建立Hele-Shaw/Darcy类比的局限性,并产生了广泛的Darcy结果的Hele-Shaw对应物。从所提出的工作中对流动引起的弥散效应的深入理解增强了多孔介质中输运过程的预测能力,并且它有助于对石油和化学工业重要的各种流动过程的设计和优化。此外,该项目将教育和培训大规模数值模拟概念的本科生和研究生,并将受益于他们与UCSB正在进行的IGERT计算科学与工程项目的联系。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Eckart Meiburg其他文献

Eckart Meiburg的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Eckart Meiburg', 18)}}的其他基金

Collaborative Research: Advancing turbidity currents: moving sources, polydispersity and aggregation
合作研究:推进浊流:移动源、多分散性和聚集
  • 批准号:
    2138583
  • 财政年份:
    2022
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Collaborative Research: Two-way Coupled Fluid/Particulate Transport in Fractured Media - Bridging the Scales from Microscopic Origins to Macroscopic Networks
合作研究:断裂介质中的双向耦合流体/颗粒传输 - 连接从微观起源到宏观网络的尺度
  • 批准号:
    2100691
  • 财政年份:
    2021
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
NSF-BSF: Multiphase transport processes with phase change in stratified hypersaline lakes: A combined computational and field investigation
NSF-BSF:分层超盐湖中具有相变的多相传输过程:计算和现场调查相结合
  • 批准号:
    1936258
  • 财政年份:
    2020
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Collaborative Research: Understanding the physics of flocculation processes and cohesive sediment transport in bottom boundary layers through multi-scale modeling
合作研究:通过多尺度建模了解底部边界层絮凝过程和粘性沉积物输送的物理原理
  • 批准号:
    1924655
  • 财政年份:
    2019
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Cohesive Sediment Dynamics in Turbulent Flow
湍流中的粘性沉积物动力学
  • 批准号:
    1803380
  • 财政年份:
    2018
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Travel Support for U.S. Participants Attending the 8th International Symposium on Stratified Flows (San Diego, August 29 - September 1, 2016)
为参加第八届分层流国际研讨会(圣地亚哥,2016 年 8 月 29 日至 9 月 1 日)的美国与会者提供差旅支持
  • 批准号:
    1630244
  • 财政年份:
    2016
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
UNS:Collaborative Research: Multiscale interactions between active particles and stratified fluids during collective vertical migration
UNS:合作研究:集体垂直迁移过程中活性颗粒与分层流体之间的多尺度相互作用
  • 批准号:
    1510615
  • 财政年份:
    2015
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Travel Support for U.S. Participants Attending the IUTAM Symposium on Multiphase Flows with Phase Change: Challenges and Opportunities, December 8 - 11, 2014, Hyderabad, India
为参加 IUTAM 相变多相流研讨会的美国参与者提供差旅支持:挑战与机遇,2014 年 12 月 8 日至 11 日,印度海得拉巴
  • 批准号:
    1417294
  • 财政年份:
    2014
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Collaborative Research: Double-diffusive sedimentation
合作研究:双扩散沉降
  • 批准号:
    1438052
  • 财政年份:
    2014
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Gravity Currents and Related Phenomena: A Circulation-Based Modeling Framework
重力流和相关现象:基于环流的建模框架
  • 批准号:
    1335148
  • 财政年份:
    2013
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant

相似国自然基金

电场作用下Hele-Shaw流中界面动力学研究
  • 批准号:
    12301553
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
Hele-Shaw水槽中气泡运动的多轨迹现象研究
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
Hele-Shaw水槽中双层液体内耦合法拉第波的研究
  • 批准号:
    11702099
  • 批准年份:
    2017
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Instabilities in Particle-laden Stratified Fluids in Hele-Shaw Cells
Hele-Shaw 池中充满颗粒的分层流体的不稳定性
  • 批准号:
    2038397
  • 财政年份:
    2020
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Instability of the interface between a displacing non-Newtonian fluid and displaced water in an axisymmetric Hele-Shaw cell
轴对称 Hele-Shaw 池中置换非牛顿流体与置换水之间界面的不稳定性
  • 批准号:
    553950-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 24万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Instabilities in Particle-laden Stratified Fluids in Hele-Shaw Cells
Hele-Shaw 池中充满颗粒的分层流体的不稳定性
  • 批准号:
    1914797
  • 财政年份:
    2019
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
CAREER: Stability, Kahler Geometry, and the Hele-Shaw Flow
职业:稳定性、卡勒几何和赫勒肖流
  • 批准号:
    1749447
  • 财政年份:
    2018
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant
Study of metal flames in Hele-Shaw cell
Hele-Shaw槽中金属火焰的研究
  • 批准号:
    526331-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 24万
  • 项目类别:
    University Undergraduate Student Research Awards
Hele-Shaw cell for combustion experiments
用于燃烧实验的 Hele-Shaw 池
  • 批准号:
    512501-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 24万
  • 项目类别:
    University Undergraduate Student Research Awards
Mathematical Sciences: Mathematical Problems From Nonlinear Dispersive Oscillations, Hele-Shaw and Stokes Flows
数学科学:非线性色散振荡、赫勒肖和斯托克斯流的数学问题
  • 批准号:
    9622810
  • 财政年份:
    1996
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Numerical Solution of the Hele-Shaw Equations
数学科学:Hele-Shaw 方程的数值解
  • 批准号:
    8913482
  • 财政年份:
    1990
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Investigation of Viscous Flow in a Hele-Shaw Cell
数学科学:Hele-Shaw 单元中粘性流的研究
  • 批准号:
    9096125
  • 财政年份:
    1989
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant
A Comparison of Numerical Methods for the Hele-Shaw Equations
Hele-Shaw方程数值方法的比较
  • 批准号:
    8813811
  • 财政年份:
    1988
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了