Mathematical Sciences: Numerical Solution of the Hele-Shaw Equations
数学科学:Hele-Shaw 方程的数值解
基本信息
- 批准号:8913482
- 负责人:
- 金额:$ 4.72万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1990
- 资助国家:美国
- 起止时间:1990-02-01 至 1993-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The proposed research involves the numerical solution of various free boundary value problems modelling flows of liquids in Hele-Shaw cells. Such Hele-Shaw flows, as they are called, are important in their own right, and they serve as very useful models of more complicated phenomena involving free boundaries. The proposed research will produce robust numerical schemes capable of handling many different types of nonlinear phenomena whose analytic resolution is currently impossible. The phenomenon of "fingering" of one fluid as it flows into another is a common, easily observed occurrence that is very difficult to describe quantitatively. The proposed research will suggest and evaluate different kinds of methods for studying numerically the set of mathematical equations that govern the evolution in time of an unstable finger. A successful numerical scheme for this particular problem will have much broader applicability to a host of problems in fluid dynamics.
拟议的研究涉及的数值解 模拟液体流动的各种自由边值问题 在黑尔-肖监狱里 这种黑尔-肖流,就像他们所说的, 它们本身就很重要, 涉及自由边界的更复杂现象的模型。 建议的研究将产生强大的数值方案 能够处理许多不同类型的非线性现象 其解析度目前是不可能的。 一种流体流入时的“指进”现象 另一种是常见的、容易观察到的现象,非常 很难定量描述。 拟议的研究将 建议并评估不同的学习方法 数值上的一组数学方程, 不稳定手指的时间演化。 一个成功的数字 针对这一特殊问题的方案将有更广泛的 适用于流体动力学中的许多问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nathaniel Whitaker其他文献
Numerical solutions of boundary value problems for Κ-surfaces inR3
R3 中 Κ 面边值问题的数值解
- DOI:
- 发表时间:
1996 - 期刊:
- 影响因子:0
- 作者:
F. Baginski;Nathaniel Whitaker - 通讯作者:
Nathaniel Whitaker
Nathaniel Whitaker的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nathaniel Whitaker', 18)}}的其他基金
Mathematical Sciences: Scientific Computing And Problems In Nature
数学科学:科学计算和自然问题
- 批准号:
9307914 - 财政年份:1993
- 资助金额:
$ 4.72万 - 项目类别:
Standard Grant
A Comparison of Numerical Methods for the Hele-Shaw Equations
Hele-Shaw方程数值方法的比较
- 批准号:
8813811 - 财政年份:1988
- 资助金额:
$ 4.72万 - 项目类别:
Standard Grant
相似国自然基金
Handbook of the Mathematics of the Arts and Sciences的中文翻译
- 批准号:12226504
- 批准年份:2022
- 资助金额:20.0 万元
- 项目类别:数学天元基金项目
SCIENCE CHINA: Earth Sciences
- 批准号:41224003
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21224005
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Information Sciences
- 批准号:61224002
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51224001
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Life Sciences (中国科学 生命科学)
- 批准号:81024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21024806
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Earth Sciences(中国科学:地球科学)
- 批准号:41024801
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
相似海外基金
CBMS Regional Conference in the Mathematical Sciences--Recent Advances in the Numerical Approximation of Stochastic Partial Differential Equations
CBMS数学科学区域会议--随机偏微分方程数值逼近的最新进展
- 批准号:
0938235 - 财政年份:2010
- 资助金额:
$ 4.72万 - 项目类别:
Standard Grant
CBMS Regional Conference in the Mathematical Sciences - Numerical Methods for Nonlinear Elliptic Equations - Spring 2007
CBMS 数学科学区域会议 - 非线性椭圆方程的数值方法 - 2007 年春季
- 批准号:
0630571 - 财政年份:2007
- 资助金额:
$ 4.72万 - 项目类别:
Standard Grant
NSF/CBMS Regional Conference in the Mathematical Sciences - "Mathematical and Numerical Treatment of Fluid Flow and Transport in Porous Media" - "May 23-27, 2006"
NSF/CBMS 数学科学区域会议 - “多孔介质中流体流动和传输的数学和数值处理” - “2006 年 5 月 23-27 日”
- 批准号:
0532039 - 财政年份:2006
- 资助金额:
$ 4.72万 - 项目类别:
Standard Grant
NSF/CBMS Regional Conference in the Mathematical Sciences - "Numerical Methods in Forward and Inverse Electromagnetic Scattering" - June 3-7, 2002
NSF/CBMS 数学科学区域会议 - “正向和逆向电磁散射的数值方法” - 2002 年 6 月 3-7 日
- 批准号:
0121301 - 财政年份:2001
- 资助金额:
$ 4.72万 - 项目类别:
Standard Grant
Mathematical Sciences: Research Experiences in Parallel Numerical Linear Algebra
数学科学:并行数值线性代数的研究经验
- 批准号:
9896361 - 财政年份:1998
- 资助金额:
$ 4.72万 - 项目类别:
Continuing Grant
Mathematical Sciences/GIG: Interdisciplinary Mathematics: Applied and Numerical Analysis in Science and Engineering
数学科学/GIG:跨学科数学:科学与工程中的应用和数值分析
- 批准号:
9709494 - 财政年份:1997
- 资助金额:
$ 4.72万 - 项目类别:
Standard Grant
Mathematical Sciences: NSF-CBMS Regional Conference on the Numerical Analysis of Hamiltonian Differential Equations
数学科学:NSF-CBMS 哈密顿微分方程数值分析区域会议
- 批准号:
9633686 - 财政年份:1997
- 资助金额:
$ 4.72万 - 项目类别:
Standard Grant
Mathematical Sciences: Research Experiences in Parallel Numerical Linear Algebra
数学科学:并行数值线性代数的研究经验
- 批准号:
9619836 - 财政年份:1997
- 资助金额:
$ 4.72万 - 项目类别:
Continuing Grant
Conference on Numerical Analysis and Domain Decomposition at the Courant Institute of Mathematical Sciences; New York, NY; January 23-24, l998
库朗数学科学研究所数值分析和域分解会议;
- 批准号:
9725103 - 财政年份:1997
- 资助金额:
$ 4.72万 - 项目类别:
Standard Grant
Mathematical Sciences: Numerical Analysis for Time-Dependent Differential Equations
数学科学:时态微分方程的数值分析
- 批准号:
9504879 - 财政年份:1996
- 资助金额:
$ 4.72万 - 项目类别:
Continuing Grant














{{item.name}}会员




