FRG: Collaborative Research: Affine Schubert Calculus: Combinatorial, geometric, physical, and computational aspects
FRG:协作研究:仿射舒伯特微积分:组合、几何、物理和计算方面
基本信息
- 批准号:0652641
- 负责人:
- 金额:$ 67.13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-07-01 至 2011-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project concerns the development of a vast extension of Schubert calculus to affine Grassmannians and affine flag varieties, called ``affine Schubert calculus". Classical Schubert calculus, a branch of enumerative algebraic geometry concerned with counting subspaces satisfying certain intersection conditions, is the outcome of the solution to Hilbert's Fifteenth problem. In the modern formulation, Schubert calculus is usually interpreted in cohomology theories of homogeneous spaces, most notably flag varieties. The full development of affine Schubert calculus will solve long-standing open problems in Macdonald theory and have an impact on physical questions, such as generalizations of Wess-Zumino-Witten conformal field theory models and extensions of Calogero-Sutherland quantum mechanical models whose eigenfunctions are k-Schur functions. The new approach to affine Schubert calculus is made possible by the recent discovery of certain explicitly defined symmetric functions called k-Schur functions. The k-Schur functions, which arose in the study of the seemingly unrelated Macdonald theory, were recently shown to be connected to the geometry and topology of the affine Grassmanian. The novel combinatorics of k-Schur functions will be exploited to deduce formulae for various multiplicities, including intersection multiplicities in the affine Grassmannian and the affine flag manifold. Some of these multiplicities are known to occur in Macdonald theory and as Verlinde fusion coefficients for the WZW model.This many-faceted project involves and ties together various problems from combinatorics, geometry, representation theory, physics, and computation. The main questions that will be addressed can be viewed from several points of view: a geometric perspective (questions such as "how many lines are there satisfying a number of generic intersection conditions?"), a combinatorial perspective ("how many elements are in given sets and what properties do these sets have?"), a physics perspective ("how do fields correlate?"), and computational aspects ("are there efficient algorithms for calculating these numbers or objects?"). The project is an international cooperative research venture, with core group members located in Canada, the United States, Chile, and France, and interdisciplinary, involving mathematicians, physicists, and computer scientists. Graduate students will receive professional training by direct involvement in the research and will benefit from interaction with the research team. A summer school at the Fields institute for graduate students is also planned at the conclusion of the project. The investigation is largely fueled by extensive computational experimentation. The robust implementation of algorithms derived from the project, will lead to the development of new packages for computer algebra systems. The dissemination of this new software through an open-source computational package, will not only advance the proposed research program but will also have an outreach impact on the mathematics, physics, and computer science communities.
这个项目涉及到将舒伯特演算扩展到仿射格拉斯曼和仿射旗的发展,称为“仿射舒伯特演算”。经典舒伯特微积分是希尔伯特第十五问题解的结果,它是数列代数几何的一个分支,研究满足一定交点条件的子空间的计数。在现代表述中,舒伯特演算通常在齐次空间的上同调理论中解释,最显著的是标志变分。仿射舒伯特演算的全面发展将解决麦克唐纳理论中长期存在的开放性问题,并对物理问题产生影响,如wuss - zumino - witten共形场论模型的推广和特征函数为k-Schur函数的Calogero-Sutherland量子力学模型的扩展。仿射舒伯特微积分的新方法是由最近发现的某些显式定义的对称函数k-舒尔函数实现的。k-舒尔函数,出现在看似无关的麦克唐纳理论的研究中,最近被证明与仿射格拉斯曼的几何和拓扑结构有关。将利用k-Schur函数的新组合来推导各种多重性的公式,包括仿射格拉斯曼和仿射标志流形中的交多重性。其中一些多重性已知出现在麦克唐纳理论和WZW模型的Verlinde融合系数中。这个多方面的项目涉及并结合了组合学、几何、表示理论、物理和计算的各种问题。可以从几个角度来看待将要解决的主要问题:几何角度(例如“有多少条线满足一些通用的相交条件?”)组合视角(“给定集合中有多少元素,这些集合有什么属性?”),从物理学的角度(“场是如何相互关联的?”)以及计算方面(“是否有有效的算法来计算这些数字或对象?”)。该项目是一个国际合作研究项目,核心小组成员位于加拿大、美国、智利和法国,涉及数学家、物理学家和计算机科学家。研究生将通过直接参与研究获得专业培训,并将从与研究团队的互动中受益。在项目结束时,还计划在菲尔兹研究所为研究生开设一所暑期学校。这项调查在很大程度上是由大量的计算实验推动的。从该项目中获得的算法的健壮实现将导致计算机代数系统的新软件包的开发。这个新软件的传播通过一个开源计算包,不仅将推进拟议的研究计划,而且将对数学,物理和计算机科学社区产生广泛的影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anne Schilling其他文献
Maximal dimension of tensor products and Schur positivity for classical Lie algebras
经典李代数的张量积的最大维数和 Schur 正性
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Cristian Lenart;Satoshi Naito;Daisuke Sagaki;Anne Schilling;Mark Shimozono;Todor Milanov;阿部紀行;小島秀雄;小島秀雄;阿部紀行;小島秀雄;阿部紀行;阿部紀行;H. Ohashi;佐垣 大輔;小島秀雄;阿部紀行;Daisuke Sagaki - 通讯作者:
Daisuke Sagaki
量子 Bruhat グラフを用いたレベル・ゼロ LS パスの表示
使用量子 Bruhat 图显示零级 LS 路径
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Cristian Lenart;Satoshi Naito;Daisuke Sagaki;Anne Schilling;Mark Shimozono;Todor Milanov;阿部紀行;小島秀雄;小島秀雄;阿部紀行;小島秀雄;阿部紀行;阿部紀行;H. Ohashi;佐垣 大輔;小島秀雄;阿部紀行;Daisuke Sagaki;小島秀雄;佐垣 大輔 - 通讯作者:
佐垣 大輔
対称空間のコンパクト化によるJacquet 加群の幾何学的実現について
对称空间紧致化Jacquet模的几何实现
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Cristian Lenart;Satoshi Naito;Daisuke Sagaki;Anne Schilling;Mark Shimozono;Todor Milanov;阿部紀行;小島秀雄;小島秀雄;阿部紀行;小島秀雄;阿部紀行;阿部紀行;H. Ohashi;佐垣 大輔;小島秀雄;阿部紀行;Daisuke Sagaki;小島秀雄;佐垣 大輔;小島秀雄;Hisanori Ohashi;阿部 紀行 - 通讯作者:
阿部 紀行
分裂型p進簡約群の法p表現の分類について
关于分裂型 p 进数约简群的模 p 表示的分类
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Cristian Lenart;Satoshi Naito;Daisuke Sagaki;Anne Schilling;Mark Shimozono;Todor Milanov;阿部紀行;小島秀雄;小島秀雄;阿部紀行;小島秀雄;阿部紀行;阿部紀行;H. Ohashi;佐垣 大輔;小島秀雄;阿部紀行;Daisuke Sagaki;小島秀雄;佐垣 大輔;小島秀雄;Hisanori Ohashi;阿部 紀行;Noriyuki Abe;大橋久範;Noriyuki Abe;阿部 紀行 - 通讯作者:
阿部 紀行
Affine crystal structure on rigged configurations of type D_n^(1)
D_n^(1) 型装配配置上的仿射晶体结构
- DOI:
10.1007/s10801-012-0383-z - 发表时间:
2013 - 期刊:
- 影响因子:0.8
- 作者:
Masato Okado;Reiho Sakamoto;Anne Schilling - 通讯作者:
Anne Schilling
Anne Schilling的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Anne Schilling', 18)}}的其他基金
Combinatorial Probability and Representation Theory
组合概率与表示论
- 批准号:
2053350 - 财政年份:2021
- 资助金额:
$ 67.13万 - 项目类别:
Standard Grant
Combinatorial representation theory applied to Schubert calculus and Markov chains
组合表示理论应用于舒伯特微积分和马尔可夫链
- 批准号:
1500050 - 财政年份:2015
- 资助金额:
$ 67.13万 - 项目类别:
Continuing Grant
Collaborative Research: SI2-SSE: Sage-Combinat: Developing and Sharing Open Source Software for Algebraic Combinatorics
合作研究:SI2-SSE:Sage-Combinat:开发和共享代数组合开源软件
- 批准号:
1147247 - 财政年份:2012
- 资助金额:
$ 67.13万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Affine Schubert Calculus: Combinatorial, geometric, physical, and computational aspects
FRG:协作研究:仿射舒伯特微积分:组合、几何、物理和计算方面
- 批准号:
0652652 - 财政年份:2007
- 资助金额:
$ 67.13万 - 项目类别:
Standard Grant
Combinatorial Aspects of Representation Theory, Mathematical Physics and q-Series
表示论、数学物理和 q 级数的组合方面
- 批准号:
0501101 - 财政年份:2005
- 资助金额:
$ 67.13万 - 项目类别:
Continuing Grant
The Combinatorics of Affine Algebras and their Applications to Mathematical Physics and Representation Theory
仿射代数的组合及其在数学物理和表示论中的应用
- 批准号:
0200774 - 财政年份:2002
- 资助金额:
$ 67.13万 - 项目类别:
Continuing Grant
相似海外基金
FRG: Collaborative Research: New birational invariants
FRG:协作研究:新的双有理不变量
- 批准号:
2244978 - 财政年份:2023
- 资助金额:
$ 67.13万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2245017 - 财政年份:2023
- 资助金额:
$ 67.13万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245111 - 财政年份:2023
- 资助金额:
$ 67.13万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245077 - 财政年份:2023
- 资助金额:
$ 67.13万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2244879 - 财政年份:2023
- 资助金额:
$ 67.13万 - 项目类别:
Standard Grant
FRG: Collaborative Research: New Birational Invariants
FRG:合作研究:新的双理性不变量
- 批准号:
2245171 - 财政年份:2023
- 资助金额:
$ 67.13万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2403764 - 财政年份:2023
- 资助金额:
$ 67.13万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2245021 - 财政年份:2023
- 资助金额:
$ 67.13万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245097 - 财政年份:2023
- 资助金额:
$ 67.13万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245147 - 财政年份:2023
- 资助金额:
$ 67.13万 - 项目类别:
Continuing Grant