The Quantum Mechanical Many-Body Problem and Statistical Mechanics
量子力学多体问题与统计力学
基本信息
- 批准号:0652854
- 负责人:
- 金额:$ 33万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-05-01 至 2011-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research is devoted to various aspects of many-body theory in quantummechanics, condensed matter physics and quantum electrodynamics, as well as someproblems in quantum information theory and pure mathematics. These various topicshave grown out of a body of research over several decades and the underlying unity isthat solutions in the various problem areas shed light on each other. A broader impactof this activity is that students and postdocs will be involved in these projects, which willcombine mentoring with research and help produce the next generation ofmathematically knowledgeable physicists. It will also further the interdisciplinary bondsbetween the communities of mathematicians and physicists and promote the relevanceof modern concepts of mathematical analysis to problems of condensed matter physics.The intellectual merit of this proposal is contained in the following partial list of specificresearch goals.1. Low density Bose gases are now in the forefront of research {experimentally andtheoretically) and it is intended to continue the previous successful work on the groundstate energy, as well as the question of Bose-Einstein condensation and its relation tosuperfluidity. One question concerns the simultaneous occurrence of solidity andsuperfluidity. Another is to validateBogolubov's second term in the expansion of the ground state energy. A third is to see ifthe excitation spectrum of the Lieb-Liniger one-dimensional model can be establishedfor realistic three-dimensional gases used in experiments.2. Various topics and conjectures concerning magnetization and long-range order in theHubbard model of correlated electrons will be investigated. In parallel, an attempt will bemade to prove long-range order in the ground states of two-dimensional Heisenbergmodels. Both models are presently important in condensed matter physics.3. A fundamental statistical-mechanical property of matter is the existence of the`thermodynamical limit of the free energy. A proof of this has been only partiallyaccomplished so far when the electromagnetic radiation #eld is taken into account. It isintended to complete the demonstration.4. To study the renormalization problem in quantum electrodynamics (QED), especiallywith regard to the many-body and bound state aspects. This continues a successfulnon-perturbative study begun under the previous grant in which we developed a modelof relativistic QED that makes sense for bound states. A complete theory has not yetbeen invented, and it is important to try to do so because QED is one of ourfundamental physical theories.5. An attempt will be made to verify the long-standing conjecture that the maximumnegative ionization of a large atom is only about one electron. It is very di#cult, evenwith computers, to be sure about ionization of atoms, but nature seems to be telling us auniversal fact about fermions that it would be desirable to understand from firstprinciples.6. Several topics in quantum information theory and closely related #elds. In particular,a proof (or disproof) will be sought for Holevo's additivity of entropy conjecture. Successhere will imply that entangled states cannot improve the capacity of quantum channels.
本研究致力于量子力学、凝聚态物理和量子电动力学中多体理论的各个方面,以及量子信息论和纯数学中的一些问题。这些不同的主题是从几十年来的研究中发展出来的,潜在的统一性是各个问题领域的解决方案相互启发。这项活动的一个更广泛的影响是,学生和博士后将参与这些项目,这些项目将把指导与研究结合起来,帮助培养下一代数学知识渊博的物理学家。它也将进一步加强数学家和物理学家之间的跨学科联系,并促进现代数学分析概念与凝聚态物理问题的相关性.这一建议的智力价值包含在以下部分具体研究目标清单中.低密度玻色气体现在处于研究的最前沿(实验和理论),它旨在继续以前在基态能量方面的成功工作,以及玻色-爱因斯坦凝聚及其与超流性的关系。一个问题是关于固体性和超流性同时出现的问题。二是验证Bogolubov在基态能量展开式中的第二项。第三是考察Lieb-Liniger一维模型的激发谱是否可以建立在实验所用的真实三维气体上.本课程将探讨哈伯德关联电子模型中有关磁化强度和长程有序性的各种问题。与此同时,我们将尝试证明二维海森堡模型基态的长程有序。这两个模型在凝聚态物理学中都是重要的。物质的一个基本物理力学性质是自由能的极限。到目前为止,当考虑到电磁辐射时,这一点的证明只是部分完成。它的目的是完成演示.研究量子电动力学(QED)中的重整化问题,特别是在多体和束缚态方面。这延续了一项成功的非微扰研究,该研究是在先前的资助下开始的,在该研究中,我们开发了一个对束缚态有意义的相对论QED模型。一个完整的理论还没有被发明出来,尝试这样做是很重要的,因为QED是我们的基本物理理论之一。我们将试图验证一个长期存在的猜想,即一个大原子的最大负电离只有一个电子。即使使用计算机,也很难确定原子的电离,但大自然似乎在告诉我们一个关于费米子的普遍事实,我们希望从第一性原理来理解这个事实。量子信息论及其密切相关领域的若干论题。特别是,证明(或反证)将寻求Holevo的可加性熵猜想。这意味着纠缠态不能提高量子信道的容量。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Elliott Lieb其他文献
Walter Thirring
- DOI:
10.1007/bf01217676 - 发表时间:
1987-03-01 - 期刊:
- 影响因子:2.600
- 作者:
Elliott Lieb - 通讯作者:
Elliott Lieb
Elliott Lieb的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Elliott Lieb', 18)}}的其他基金
The Quantum Mechanical Many-Body Problem and Statistical Mechanics
量子力学多体问题与统计力学
- 批准号:
1265118 - 财政年份:2013
- 资助金额:
$ 33万 - 项目类别:
Continuing Grant
The Quantum Mechanical Many-body Problem and Statistical Mechanics
量子力学多体问题与统计力学
- 批准号:
0965859 - 财政年份:2010
- 资助金额:
$ 33万 - 项目类别:
Continuing Grant
The Quantum Mechanical Many-Body Problem and Statistical Mechanics
量子力学多体问题与统计力学
- 批准号:
0139984 - 财政年份:2002
- 资助金额:
$ 33万 - 项目类别:
Continuing Grant
The Quantum Mechanical Many-Body Problem and Statistical Mechanics
量子力学多体问题与统计力学
- 批准号:
9820650 - 财政年份:1999
- 资助金额:
$ 33万 - 项目类别:
Continuing Grant
The Quantum Mechanical Many-Body Problems and Mathematical Analysis
量子力学多体问题与数学分析
- 批准号:
9513072 - 财政年份:1996
- 资助金额:
$ 33万 - 项目类别:
Continuing Grant
The Quantum Mechanical Many-Body Problems and Mathematical Analysis (Physics)
量子力学多体问题与数学分析(物理)
- 批准号:
9019433 - 财政年份:1991
- 资助金额:
$ 33万 - 项目类别:
Continuing Grant
Statistical Mechanics and the Quantum and Classical Many Body Problems (Physics)
统计力学与量子和经典多体问题(物理)
- 批准号:
8515288 - 财政年份:1985
- 资助金额:
$ 33万 - 项目类别:
Continuing Grant
Statistical Mechanics and the Quantum and Classical Many Body Problems (Physics)
统计力学与量子和经典多体问题(物理)
- 批准号:
8116101 - 财政年份:1981
- 资助金额:
$ 33万 - 项目类别:
Continuing Grant
Statistical Mechanics and the Quantum and Classical Many Body Problem
统计力学与量子和经典多体问题
- 批准号:
7825390 - 财政年份:1979
- 资助金额:
$ 33万 - 项目类别:
Continuing Grant
相似海外基金
Collaborative Research: Extreme Mechanics of the Human Brain via Integrated In Vivo and Ex Vivo Mechanical Experiments
合作研究:通过体内和离体综合力学实验研究人脑的极限力学
- 批准号:
2331294 - 财政年份:2024
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Neural-driven, active, and reconfigurable mechanical metamaterials (NARMM)
神经驱动、主动和可重构机械超材料 (NARMM)
- 批准号:
MR/X035506/1 - 财政年份:2024
- 资助金额:
$ 33万 - 项目类别:
Fellowship
Understanding Architecture Hierarchy of Polymer Networks to Control Mechanical Responses
了解聚合物网络的架构层次结构以控制机械响应
- 批准号:
2419386 - 财政年份:2024
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Alabama Agricultural and Mechanical University ALSAMP Bridge to the Doctorate: Navigating BD Scholars’ Successful Transition to STEM Graduate Programs
阿拉巴马农业机械大学 ALSAMP 通往博士学位的桥梁:引导 BD 学者成功过渡到 STEM 研究生项目
- 批准号:
2404955 - 财政年份:2024
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Exploring the contribution of cell wall components and osmotic pressure to mechanical properties that enable root growth
探索细胞壁成分和渗透压对促进根系生长的机械性能的贡献
- 批准号:
24K17868 - 财政年份:2024
- 资助金额:
$ 33万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Innovative Zn alloys with essential mechanical and biofunctional properties
具有基本机械和生物功能特性的创新锌合金
- 批准号:
DP240101131 - 财政年份:2024
- 资助金额:
$ 33万 - 项目类别:
Discovery Projects
Elucidating the involvement of transient receptor potential vanilloid-type 4 in mechanical stimuli-induced swallowing reflex
阐明瞬时受体电位香草酸4型在机械刺激诱导的吞咽反射中的参与
- 批准号:
24K19847 - 财政年份:2024
- 资助金额:
$ 33万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Institutional Innovation for sustainable mechanical rental service for resource poor farmers
为资源贫乏农民提供可持续机械租赁服务的制度创新
- 批准号:
23K23708 - 财政年份:2024
- 资助金额:
$ 33万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
ICF Mechanical Property Optimisation of Magnesium Alloy Wires for Bioresorbable Vascular Scaffolds for the Treatment of Peripheral Arterial Disease
用于治疗外周动脉疾病的生物可吸收血管支架镁合金丝的 ICF 机械性能优化
- 批准号:
MR/Z503897/1 - 财政年份:2024
- 资助金额:
$ 33万 - 项目类别:
Research Grant
NSF Convergence Accelerator Track M: Bio-Inspired Surface Design for High Performance Mechanical Tracking Solar Collection Skins in Architecture
NSF Convergence Accelerator Track M:建筑中高性能机械跟踪太阳能收集表皮的仿生表面设计
- 批准号:
2344424 - 财政年份:2024
- 资助金额:
$ 33万 - 项目类别:
Standard Grant