Subfactors and Planar Algebras
子因子和平面代数
基本信息
- 批准号:0653717
- 负责人:
- 金额:$ 24.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-07-01 至 2011-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The project deals with the structure of subfactors and planar algebras.Jones' operad of planar tangles acts naturally on the standard invariant of a subfactor. The resulting planar algebra techniques have led to a deeper understanding of the algebraic-combinatorial structures underlying the theory of subfactors. These techniques will be used to investigate planar algebras associated to infinited depth subfactors.General compositions of planar algebras will be studied, and obstructions for such compositions will be analyzed. The free product of planar algebras discovered by Bisch and Jones in prior work will play a key role here. The project seeks a better understanding of the notion of "planar relations" in the context of composition of Temperley-Lieb planar algebras. Potential applications of the theory of subfactors and planar algebras to solid state physics and topological quantum computation will be investigated. Connections between planar algebras and random matrix theory will be explored.Ideas from operator algebras and noncommutative geometry have played for a long time an important role in quantum physics, statistical mechanics and more recently, in Freedman's approach to quantum computing. Jones' theory of subfactors, which is based on abstract mathematical objects introduced by John von Neumann in the 1930's, has had profound applications to several areas of mathematics and physics, including knot theory, representation theory, statistical mechanics and conformal field theory. A subfactor is a mathematical object which allows one to capture very general symmetries of a mathematical or physical situation from which it was constructed. Planar algebras provide a mathematical framework which seems tailor-made to describe phenomena in solid state physics.The project focuses on investigating the structure of these new objects and their potential applications to problems in small scale physics.
该项目研究子因子和平面代数的结构,平面缠结的琼斯运算自然地作用于子因子的标准不变量。由此产生的平面代数技术,导致了更深入的理解的代数组合结构的理论的子因子。这些技巧将用于研究与无限深度子因子相关的平面代数,研究平面代数的一般合成,并分析这种合成的障碍。自由产品的平面代数所发现的Bisch和琼斯在以前的工作将发挥关键作用在这里。该项目旨在更好地理解“平面关系”的概念,在Temperley-Lieb平面代数的组成的背景下。子因子和平面代数理论在固态物理和拓扑量子计算中的潜在应用将被研究。平面代数和随机矩阵理论之间的联系将被探讨。从算子代数和非交换几何的想法已经发挥了很长一段时间的重要作用,在量子物理学,统计力学和最近,在弗里德曼的方法来量子计算。琼斯的子因子理论是基于约翰·冯·诺依曼在20世纪30年代提出的抽象数学对象,它在数学和物理学的几个领域都有着深远的应用,包括纽结理论、表示论、统计力学和共形场论。子因子是一个数学对象,它允许人们捕捉构建它的数学或物理情况的非常普遍的对称性。平面代数提供了一个数学框架,似乎是为描述固态物理现象而量身定制的。该项目侧重于研究这些新对象的结构及其在小尺度物理问题中的潜在应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dietmar Bisch其他文献
Dietmar Bisch的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dietmar Bisch', 18)}}的其他基金
Spring Institute in Noncommutative Geometry and Operator Algebras 2019
Spring 学院非交换几何和算子代数 2019
- 批准号:
1855778 - 财政年份:2019
- 资助金额:
$ 24.3万 - 项目类别:
Standard Grant
Spring Institute on Noncommutative Geometry and Operator Algebras 2018
Spring 非交换几何和算子代数研究所 2018
- 批准号:
1800204 - 财政年份:2018
- 资助金额:
$ 24.3万 - 项目类别:
Standard Grant
Conference: Annual Spring Institute on Noncommutative Geometry and Operator Algebras; University of Bonn, Germany; May 17-25, 2016
会议:年度春季非交换几何和算子代数研究所;
- 批准号:
1600819 - 财政年份:2016
- 资助金额:
$ 24.3万 - 项目类别:
Standard Grant
Annual Spring Institute on Noncommutative Geometry and Operator Algebras (NCGOA) 2015
年度春季非交换几何和算子代数研究所 (NCGOA) 2015
- 批准号:
1500926 - 财政年份:2015
- 资助金额:
$ 24.3万 - 项目类别:
Standard Grant
Subfactors, bimodules and planar algebras
子因子、双模和平面代数
- 批准号:
1001560 - 财政年份:2010
- 资助金额:
$ 24.3万 - 项目类别:
Continuing Grant
Special Meetings: Annual Spring Institute in Noncommutative Geometry and Operator Algebras
特别会议:年度非交换几何和算子代数春季研究所
- 批准号:
0849242 - 财政年份:2009
- 资助金额:
$ 24.3万 - 项目类别:
Standard Grant
Conference Support - First East Coast Operator Algebras Symposium; September 20-21, 2003; Nashville, TN
会议支持——首届东海岸算子代数研讨会;
- 批准号:
0330617 - 财政年份:2003
- 资助金额:
$ 24.3万 - 项目类别:
Standard Grant
Analytical and Combinatorial Aspects of Subfactors
子因素的分析和组合方面
- 批准号:
9877067 - 财政年份:1999
- 资助金额:
$ 24.3万 - 项目类别:
Standard Grant
相似海外基金
Contribution of Endothelial Planar Cell Polarity pathways in Blood Flow Direction Sensing
内皮平面细胞极性通路在血流方向传感中的贡献
- 批准号:
10750690 - 财政年份:2024
- 资助金额:
$ 24.3万 - 项目类别:
Planar culture of gastrointestinal stem cells for screening pharmaceuticals for adverse event risk
胃肠道干细胞平面培养用于筛选药物不良事件风险
- 批准号:
10707830 - 财政年份:2023
- 资助金额:
$ 24.3万 - 项目类别:
Understanding the Dynamics of Periodic Planar Microstructures Responding to Colliding Micro-Particles
了解周期性平面微结构响应碰撞微粒的动力学
- 批准号:
2318110 - 财政年份:2023
- 资助金额:
$ 24.3万 - 项目类别:
Standard Grant
Rigid Planar Organic Molecules for Low Threshold Organic Solid-State Lasers
用于低阈值有机固态激光器的刚性平面有机分子
- 批准号:
23KK0099 - 财政年份:2023
- 资助金额:
$ 24.3万 - 项目类别:
Fund for the Promotion of Joint International Research (International Collaborative Research)
Study of High Precision Position Control for Underwater Charging Using Planar Charging Equipment by Hovering-AUV
悬停AUV平面充电设备水下充电高精度位置控制研究
- 批准号:
23K19108 - 财政年份:2023
- 资助金额:
$ 24.3万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Investigating a role for Wnt-associated planar polarity in collective migration of human intestinal epithelium
研究 Wnt 相关平面极性在人肠上皮集体迁移中的作用
- 批准号:
10751956 - 财政年份:2023
- 资助金额:
$ 24.3万 - 项目类别:
Elucidation of photoresponse characteristics of near-infrared absorbing planar d8 transition metal complexes for photodynamic therapy
阐明用于光动力治疗的近红外吸收平面 d8 过渡金属配合物的光响应特性
- 批准号:
23K04799 - 财政年份:2023
- 资助金额:
$ 24.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
SBIR Phase II: Non-planar Spectral Breast Computed Tomography (CT)
SBIR 第二阶段:非平面光谱乳腺计算机断层扫描 (CT)
- 批准号:
2241912 - 财政年份:2023
- 资助金额:
$ 24.3万 - 项目类别:
Standard Grant