Understanding the Dynamics of Periodic Planar Microstructures Responding to Colliding Micro-Particles

了解周期性平面微结构响应碰撞微粒的动力学

基本信息

  • 批准号:
    2318110
  • 负责人:
  • 金额:
    $ 51.7万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2026-08-31
  • 项目状态:
    未结题

项目摘要

Speeding airborne particles often result in severe physical erosion damage in aircraft, for example damage to jet engine turbine blades caused by ice or sand particles. This award supports research to understand the mechanics of collisions of high-speed particles on surfaces. Controlled collisions of rigid microparticles against surfaces with precisely manufactured microstructures will be conducted at various speeds and angles. Energy exchanges between the speeding particles and the periodic structures will be observed with ultrafast imaging. The mechanical interaction characteristics varying with the particle’s energy and momentum will extend the scope of traditional spectroscopy to mechanics. Modeling the ordered surface structures as planar metamaterials wil further contribute to the fundamental understanding of these interactions. The impact of this research has the potential to facilitate the development of novel industrial processes, such as particle sorting and selection, in industrial and public health sectors.Implementing functional microscopic textures in soft materials has shown exceptional adhesion and friction properties, as evidenced by the gripping abilities of Gecko feet and bio-inspired synthetic adhesives. This ballistic mechanical metamaterials study will extend the scope of tribological characteristics of microstructured surfaces from the quasi-static (sub-second regime) to the high-strain rate (sub-microsecond regime). Furthermore, the researched mechanical metamaterials based on rationally designed planar viscoelastic microstructures, which serve as a collection of viscoelastic resonators, are expected to demonstrate various unexplored nonlinear dynamic phenomena, such as energy absorption resonance, anti-Stokes scattering, and geometrical quantization in the mechanical system. This research project will advance the fundamental understanding of how mechanical metasurfaces dynamically create interfacial responses originating from viscoelasticity, geometrical phase transformation, and the evolution of microstructural adhesion. Ultimately, the researched mechanical metamaterials capable of manipulating the scattering cross-section of the incoming microparticles will extend the knowledge of the transient rheological and tribological behaviors of deformable solid materials and structures when subjected to ultrahigh-strain-rate mechanical stimuli.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
超速驾驶空中颗粒通常会导致飞机的严重物理侵蚀损害,例如造成由冰或沙子颗粒引起的喷气发动机涡轮叶片的损坏。该奖项支持研究,以了解表面上高速颗粒碰撞的机制。刚性微粒针对具有精确生产微观结构的表面的受控碰撞将以各种速度和角度进行。超快成像将观察到速度颗粒和周期结构之间的能量交换。机械相互作用的特性随粒子的能量和动量而变化,将将传统光谱的范围扩展到机械范围。将有序的表面结构建模为平面超材料将进一步有助于对这些相互作用的基本理解。这项研究的影响有可能促进工业和公共卫生领域中新型工业过程的发展,例如粒子分类和选择。软材料中的功能显微镜纹理表现出了非凡的粘合剂和摩擦特性,这是由geck脚和生物启动的合成粘合剂的抓地力所证明的。这项弹道机械超材料研究将将微结构表面的摩擦学特征范围从准静态(下秒制度)扩展到高应变速率(次微秒级)。此外,根据理性设计的平面粘弹性微观结构(作为粘弹性谐振器的集合)的研究机械超材料预计将证明各种意外的非线性动态现象,例如能量吸收谐振,抗螺旋体散射,以及机械系统中的抗量化量化。该研究项目将促进对机械跨面的基本理解,如何动态地创建源自粘弹性,几何相变和微结构粘附的演变。最终,能够操纵传入微颗粒的散射横截面的经过的研究机械材料将扩展对瞬时的固体材料和结构的瞬时流变和摩擦学行为的了解,当受到超高影响力和结构的影响时,当经过NSF的智力和智力上的启发而予以评估时,该奖项的范围均可予以实现。 标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jae-Hwang Lee其他文献

Jae-Hwang Lee的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jae-Hwang Lee', 18)}}的其他基金

Collaborative Research: Multi-Scale Micromechanical Properties of Hierarchical Coatings and Interfaces Fabricated by Self-Limiting Electrospray Deposition
合作研究:自限性电喷雾沉积制备的分层涂层和界面的多尺度微机械性能
  • 批准号:
    2019928
  • 财政年份:
    2020
  • 资助金额:
    $ 51.7万
  • 项目类别:
    Standard Grant
Collaborative Research: High-Strain-Rate Dynamics of Copolymer Microparticles for Advanced Additive Manufacturing
合作研究:用于先进增材制造的共聚物微粒的高应变率动力学
  • 批准号:
    1760294
  • 财政年份:
    2018
  • 资助金额:
    $ 51.7万
  • 项目类别:
    Standard Grant

相似国自然基金

周期性分子团簇的强场超快动力学研究
  • 批准号:
    12374237
  • 批准年份:
    2023
  • 资助金额:
    53.00 万元
  • 项目类别:
    面上项目
周期高维复杂网络结构传染病模型的时空传播动力学
  • 批准号:
    12301189
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
周期性强驱动下的金刚石氮空位中心体系量子动力学
  • 批准号:
    12274422
  • 批准年份:
    2022
  • 资助金额:
    55.00 万元
  • 项目类别:
    面上项目
周期性强驱动下的金刚石氮空位中心体系量子动力学
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
表面声波驱动的周期性缺陷磁性薄膜及图案化磁性薄膜中磁化强度动力学研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    62 万元
  • 项目类别:
    面上项目

相似海外基金

A neural circuit controlling experience-dependent auditory preference behavior: Identification of relevant brain regions and its dynamics analysis
控制依赖于经验的听觉偏好行为的神经回路:相关大脑区域的识别及其动态分析
  • 批准号:
    19K12190
  • 财政年份:
    2019
  • 资助金额:
    $ 51.7万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Understanding of formation dynamics of femtosecond-laser-induced periodic structures on SiC substrate
了解 SiC 衬底上飞秒激光诱导周期性结构的形成动力学
  • 批准号:
    17K14111
  • 财政年份:
    2017
  • 资助金额:
    $ 51.7万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Research on particular solutions and dynamics around them for Hamiltonian systems
研究哈密顿系统的特定解及其动力学
  • 批准号:
    26800059
  • 财政年份:
    2014
  • 资助金额:
    $ 51.7万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Understanding the dynamics of low intensity conflict and an anthropological study of peace-making
了解低强度冲突的动态以及缔造和平的人类学研究
  • 批准号:
    22710253
  • 财政年份:
    2010
  • 资助金额:
    $ 51.7万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
複素時間特異点解析による渦層の渦巻解の存在と一意性の理論的・数値的研究
利用复时间奇异性分析对涡层中涡解的存在性和唯一性进行理论和数值研究
  • 批准号:
    14740069
  • 财政年份:
    2002
  • 资助金额:
    $ 51.7万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了