Combinatorial Patterns and Structures

组合模式和结构

基本信息

  • 批准号:
    0653846
  • 负责人:
  • 金额:
    $ 11.73万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-09-01 至 2011-08-31
  • 项目状态:
    已结题

项目摘要

This proposal focuses on the evolution of patterns and structures in discrete objects. Through a series of interrelated problems, the PI investigates properties and statistics of various combinatorial structures, including permutations, involutions, matchings and set partitions. By a variant of the RSK algorithm from algebraic combinatorics, matchings and set partitions are in one-to-one correspondence with oscillating and vacillating tableaux, which are certain random walks in the Hasse diagram of the lattice of integer partitions. Recently there have been major breakthroughs in understanding the statistics of such tableaux. Many unexpected and deep connections have been obtained with such areas as representation theory and random matrix theory. The proposed research concentrates on the combinatorial properties behind these connections, in particular, on the properties of crossings and nestings in matchings and set partitions, which are natural extensions of increasing and decreasing subsequences in permutations. The PI will study the problems from the following aspects: pattern avoidance, filling of Ferrer shapes and growth diagram, generating functions, and asymptotic distribution.She will also extend the theory to general graphs, chord configurations, and filling of certain polyminos. In this research, some algorithm plays an important role in understanding the evolution of combinatorial patterns and structures. This algorithmic approach is a particular emphasis of the project.This research is in the general area of combinatorics. One of the goals of combinatorics is to find efficient methods for arranging, enumerating, and manipulating discrete collections of objects. The proposed research is right aimed at these goals. The PI uses a combined algebraic and algorithmic approach to understand the formation and growth of discrete structures, which will help develop new methods and techniques in combinatorial theory. The proposed research are closed connected to other areas of mathematics, including analysis, representation theory, random matrix theory, and free probability theory. Results from this project would have direct applications in computer sciences, electronic engineering, operation research, and statistics.
这一建议侧重于离散对象中的模式和结构的演变。通过一系列相互关联的问题,PI研究了各种组合结构的性质和统计,包括排列、对合、匹配和集合划分。通过代数组合数学中RSK算法的一个变形,匹配和集合划分与振荡和摆动的表是一一对应的,它们是整数划分格的哈斯图中的某些随机游动。最近,在理解此类场面的统计数据方面取得了重大突破。它与表象理论、随机矩阵理论等领域有着许多意想不到的深层次联系。所提出的研究集中在这些连接背后的组合性质,特别是匹配和集合划分中的交叉和嵌套的性质,它们是排列中递增和递减子序列的自然扩展。PI将从模式避免、费雷尔形状和生长图的填充、母函数和渐近分布等方面研究这些问题,并将该理论扩展到一般图、弦构形和某些多项式的填充。在本研究中,一些算法在理解组合模式和结构的演化方面发挥了重要作用。这一算法方法是该项目的一个特别重点。这项研究是在组合学的一般领域。组合学的目标之一是找到有效的方法来安排、列举和操作离散的对象集合。拟议中的研究针对这些目标是正确的。PI使用代数和算法相结合的方法来理解离散结构的形成和增长,这将有助于开发组合理论的新方法和新技术。拟议的研究与其他数学领域密切相关,包括分析、表示理论、随机矩阵理论和自由概率理论。该项目的成果将直接应用于计算机科学、电子工程、运筹学和统计学。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Huafei Yan其他文献

Continuing the continuous harvests of food production: from the perspective of the interrelationships among cultivated land quantity, quality, and grain yield
持续粮食生产的连年丰收:从耕地数量、质量与粮食产量相互关系的视角
  • DOI:
    10.1057/s41599-024-04342-1
  • 发表时间:
    2025-01-11
  • 期刊:
  • 影响因子:
    3.600
  • 作者:
    Peng Cheng;Yang Zhang;Ke Liu;Xuesong Kong;Shiman Wu;Huafei Yan;Ping Jiang
  • 通讯作者:
    Ping Jiang

Huafei Yan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Huafei Yan', 18)}}的其他基金

Conference: CombinaTexas 2023
会议:CombinaTexas 2023
  • 批准号:
    2302139
  • 财政年份:
    2023
  • 资助金额:
    $ 11.73万
  • 项目类别:
    Standard Grant
CombinaTexas 2020
德克萨斯州组合 2020
  • 批准号:
    2000531
  • 财政年份:
    2020
  • 资助金额:
    $ 11.73万
  • 项目类别:
    Standard Grant
CombinaTexas 2018
2018年德克萨斯州组合
  • 批准号:
    1743183
  • 财政年份:
    2017
  • 资助金额:
    $ 11.73万
  • 项目类别:
    Standard Grant
Problems in Enumerative Combinatorics and Applications
枚举组合学及其应用中的问题
  • 批准号:
    1161414
  • 财政年份:
    2012
  • 资助金额:
    $ 11.73万
  • 项目类别:
    Standard Grant
Research on Enumerative and Probabilistic Combinatorics
枚举与概率组合学研究
  • 批准号:
    0245526
  • 财政年份:
    2003
  • 资助金额:
    $ 11.73万
  • 项目类别:
    Continuing Grant
Interdisciplinary Grants in the Mathematical Sciences: Combinatorial Methods in Manufacturing
数学科学的跨学科资助:制造中的组合方法
  • 批准号:
    0308827
  • 财政年份:
    2003
  • 资助金额:
    $ 11.73万
  • 项目类别:
    Standard Grant
CombinaTexas: A Combinatorics Conference for the South-Central U.S.
CombinaTexas:美国中南部组合学会议
  • 批准号:
    0300205
  • 财政年份:
    2003
  • 资助金额:
    $ 11.73万
  • 项目类别:
    Standard Grant
Enumerative Combinatorics and Probabilistic Method
枚举组合学和概率方法
  • 批准号:
    0070574
  • 财政年份:
    2000
  • 资助金额:
    $ 11.73万
  • 项目类别:
    Standard Grant

相似海外基金

NSF Postdoctoral Fellowship in Biology FY 2021: Macrophysiological patterns in the thermal and optical properties of ant cuticular structures
2021 财年 NSF 生物学博士后奖学金:蚂蚁表皮结构热和光学特性的宏观生理模式
  • 批准号:
    2109399
  • 财政年份:
    2022
  • 资助金额:
    $ 11.73万
  • 项目类别:
    Fellowship Award
Development of micro/nano-patterns to create periodontal ligament sheets with three-dimensionally structures by guiding stem cells
开发微纳米图案,通过引导干细胞创建具有三维结构的牙周膜片
  • 批准号:
    20K10006
  • 财政年份:
    2020
  • 资助金额:
    $ 11.73万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Sound Patterns and Linguistic Structures at the Transition Space in Conversation
对话中过渡空间的声音模式和语言结构
  • 批准号:
    444631148
  • 财政年份:
    2020
  • 资助金额:
    $ 11.73万
  • 项目类别:
    Research Grants
Unraveling variation patterns and the formation/maintenance mechanisms of fish community structures through multi-site, high-frequency environmental DNA sampling
通过多地点、高频环境DNA采样揭示鱼类群落结构的变异模式和形成/维持机制
  • 批准号:
    19H03291
  • 财政年份:
    2019
  • 资助金额:
    $ 11.73万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Adopting mangrove vegetation zonation patterns to gain information on subsurface aquifer structures and advance belowground plant competition concepts in individual-based modelling – MARZIPAN
采用红树林植被分区模式来获取地下含水层结构的信息,并在基于个体的建模中推进地下植物竞争概念 â MARZIPAN
  • 批准号:
    398759560
  • 财政年份:
    2018
  • 资助金额:
    $ 11.73万
  • 项目类别:
    Research Grants
Theoretical elucidation for spatiotemporal structures of turbulent particle transports and landform patterns in solid-gas multiphase flow
固气多相流中湍流粒子输运的时空结构和地形模式的理论阐明
  • 批准号:
    17K14353
  • 财政年份:
    2017
  • 资助金额:
    $ 11.73万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Reconstructing contaminant-exposure histories and residence patterns fish species using michrochemical analysis of fish aging structures (otoliths)
利用鱼类老化结构(耳石)的微化学分析重建鱼类的污染物暴露历史和居住模式
  • 批准号:
    453465-2013
  • 财政年份:
    2016
  • 资助金额:
    $ 11.73万
  • 项目类别:
    Industrial R&D Fellowships (IRDF)
Phase field modeling of phase patterns and domain structures in functional nano-composite films
功能纳米复合薄膜中相图案和域结构的相场建模
  • 批准号:
    155157-2010
  • 财政年份:
    2015
  • 资助金额:
    $ 11.73万
  • 项目类别:
    Discovery Grants Program - Individual
Reconstructing contaminant-exposure histories and residence patterns fish species using michrochemical analysis of fish aging structures (otoliths)
利用鱼类老化结构(耳石)的微化学分析重建鱼类的污染物暴露历史和居住模式
  • 批准号:
    453465-2013
  • 财政年份:
    2015
  • 资助金额:
    $ 11.73万
  • 项目类别:
    Industrial R&D Fellowships (IRDF)
Adoption and Diffusion Patterns in Network Structures as Drivers of Individual Consumer Behavior
网络结构中的采用和扩散模式作为个人消费者行为的驱动因素
  • 批准号:
    258668800
  • 财政年份:
    2014
  • 资助金额:
    $ 11.73万
  • 项目类别:
    Research Units
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了