Research on Enumerative and Probabilistic Combinatorics

枚举与概率组合学研究

基本信息

  • 批准号:
    0245526
  • 负责人:
  • 金额:
    $ 12.49万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2003
  • 资助国家:
    美国
  • 起止时间:
    2003-06-01 至 2007-05-31
  • 项目状态:
    已结题

项目摘要

Abstract for Yan DMS-0245526The proposed project focuses on a series of interrelated problems in enumerative and probabilistic combinatorics. In recent years deep and unexpected connections have been seen between algebraic combinatorics and probability theory, in particular, stochastic processes. It is the primary objective of the investigator to explore such connections and to develop new methods and techniques based on algebraic-combinatorial principles, as well as analytic methods of probability and random processes. The project focuses on four main areas. The first is to apply the theory of branching processes and stochastic analysis to the enumeration of combinatorial objects, and to analyze the distributive asymptotics for families of random structures, including random trees, random forests, random sequences, and various random walks. The second is to investigate the enumeration of statistics with an Airy type oflimit distribution. The third is to study the algebraic properties and the applications of sequences of polynomials in enumerative combinatorics, which would extend the classical theory of binomial enumeration. Finally, several problems on geometric random graphs and various combinatorial games will also be investigated.This research is in the general area of combinatorics. One of the goals of combinatorics is to find efficient methods for arranging, enumerating, and manipulating discrete collections of objects.The proposed research addresses these goals with a combined algebraic and probabilistic approach. There are far-reaching applicationsto other areas of pure mathematics, including algebra, analysis, number theory, statistics, and topology, as well as to areas of applied sciences such as computer science, electrical engineering, and management science. Continuing research in combinatorics and its applications will contribute advances in bioinfomatics, internet traffic routing, network communications, and operations research, which would bring significant benefits to industry and society.
Yan DMS-0245526的摘要该项目的重点是枚举和概率组合学中一系列相互关联的问题。近年来,代数组合学和概率论,特别是随机过程之间出现了深刻而意想不到的联系。这是调查的主要目标,探索这种联系,并开发新的方法和技术的基础上代数组合的原则,以及概率和随机过程的分析方法。该项目侧重于四个主要领域。第一个是应用分支过程和随机分析的理论来计数组合对象,并分析随机结构族的分布渐近性,包括随机树,随机森林,随机序列和各种随机游动。第二部分研究了具有Airy型极限分布的统计量的计数问题。 三是研究了多项式序列的代数性质及其在计数组合学中的应用,推广了经典的二项式计数理论。最后,我们也将探讨几何随机图与各种组合游戏的一些问题,这些研究属于组合学的一般范畴。组合数学的目标之一是找到有效的方法来安排,枚举和操纵离散的对象集合。拟议的研究与组合代数和概率的方法来解决这些目标。有深远的应用到其他领域的纯数学,包括代数,分析,数论,统计学和拓扑学,以及应用科学领域,如计算机科学,电气工程和管理科学。继续研究组合学及其应用将有助于生物信息学,互联网流量路由,网络通信和运筹学的进步,这将为工业和社会带来重大利益。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Huafei Yan其他文献

Continuing the continuous harvests of food production: from the perspective of the interrelationships among cultivated land quantity, quality, and grain yield
持续粮食生产的连年丰收:从耕地数量、质量与粮食产量相互关系的视角
  • DOI:
    10.1057/s41599-024-04342-1
  • 发表时间:
    2025-01-11
  • 期刊:
  • 影响因子:
    3.600
  • 作者:
    Peng Cheng;Yang Zhang;Ke Liu;Xuesong Kong;Shiman Wu;Huafei Yan;Ping Jiang
  • 通讯作者:
    Ping Jiang

Huafei Yan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Huafei Yan', 18)}}的其他基金

Conference: CombinaTexas 2023
会议:CombinaTexas 2023
  • 批准号:
    2302139
  • 财政年份:
    2023
  • 资助金额:
    $ 12.49万
  • 项目类别:
    Standard Grant
CombinaTexas 2020
德克萨斯州组合 2020
  • 批准号:
    2000531
  • 财政年份:
    2020
  • 资助金额:
    $ 12.49万
  • 项目类别:
    Standard Grant
CombinaTexas 2018
2018年德克萨斯州组合
  • 批准号:
    1743183
  • 财政年份:
    2017
  • 资助金额:
    $ 12.49万
  • 项目类别:
    Standard Grant
Problems in Enumerative Combinatorics and Applications
枚举组合学及其应用中的问题
  • 批准号:
    1161414
  • 财政年份:
    2012
  • 资助金额:
    $ 12.49万
  • 项目类别:
    Standard Grant
Combinatorial Patterns and Structures
组合模式和结构
  • 批准号:
    0653846
  • 财政年份:
    2007
  • 资助金额:
    $ 12.49万
  • 项目类别:
    Standard Grant
Interdisciplinary Grants in the Mathematical Sciences: Combinatorial Methods in Manufacturing
数学科学的跨学科资助:制造中的组合方法
  • 批准号:
    0308827
  • 财政年份:
    2003
  • 资助金额:
    $ 12.49万
  • 项目类别:
    Standard Grant
CombinaTexas: A Combinatorics Conference for the South-Central U.S.
CombinaTexas:美国中南部组合学会议
  • 批准号:
    0300205
  • 财政年份:
    2003
  • 资助金额:
    $ 12.49万
  • 项目类别:
    Standard Grant
Enumerative Combinatorics and Probabilistic Method
枚举组合学和概率方法
  • 批准号:
    0070574
  • 财政年份:
    2000
  • 资助金额:
    $ 12.49万
  • 项目类别:
    Standard Grant

相似海外基金

Postdoctoral Fellowship: MPS-Ascend: Topological Enrichments in Enumerative Geometry
博士后奖学金:MPS-Ascend:枚举几何中的拓扑丰富
  • 批准号:
    2402099
  • 财政年份:
    2024
  • 资助金额:
    $ 12.49万
  • 项目类别:
    Fellowship Award
Logarithmic enumerative geometry and moduli spaces
对数枚举几何和模空间
  • 批准号:
    EP/Y037162/1
  • 财政年份:
    2024
  • 资助金额:
    $ 12.49万
  • 项目类别:
    Research Grant
A1-Homotopy Theory and Applications to Enumerative Geometry and Number Theory
A1-同伦理论及其在枚举几何和数论中的应用
  • 批准号:
    2405191
  • 财政年份:
    2024
  • 资助金额:
    $ 12.49万
  • 项目类别:
    Standard Grant
Conference: Conference on Enumerative and Algebraic Combinatorics
会议:枚举与代数组合学会议
  • 批准号:
    2344639
  • 财政年份:
    2024
  • 资助金额:
    $ 12.49万
  • 项目类别:
    Standard Grant
Collaborative Research: Derived Categories in Birational Geometry, Enumerative Geometry, and Non-commutative Algebra
合作研究:双有理几何、枚举几何和非交换代数中的派生范畴
  • 批准号:
    2302262
  • 财政年份:
    2023
  • 资助金额:
    $ 12.49万
  • 项目类别:
    Standard Grant
Dualities in Enumerative Algebraic Geometry
枚举代​​数几何中的对偶性
  • 批准号:
    2302117
  • 财政年份:
    2023
  • 资助金额:
    $ 12.49万
  • 项目类别:
    Standard Grant
Conference: Motivic and non-commutative aspects of enumerative geometry, Homotopy theory, K-theory, and trace methods
会议:计数几何的本构和非交换方面、同伦理论、K 理论和迹方法
  • 批准号:
    2328867
  • 财政年份:
    2023
  • 资助金额:
    $ 12.49万
  • 项目类别:
    Standard Grant
Collaborative Research: Derived Categories in Birational Geometry, Enumerative Geometry, and Non-commutative Algebra
合作研究:双有理几何、枚举几何和非交换代数中的派生范畴
  • 批准号:
    2302263
  • 财政年份:
    2023
  • 资助金额:
    $ 12.49万
  • 项目类别:
    Standard Grant
Fusion of enumerative and algebraic geometry and exploration of quasi-geometric invariants
枚举几何与代数几何的融合以及准几何不变量的探索
  • 批准号:
    23K17298
  • 财政年份:
    2023
  • 资助金额:
    $ 12.49万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Pioneering)
Representation theory of affine Lie algebras and enumerative geometry of sheaves on toric surfaces and threefolds
仿射李代数表示论与复曲面和三重滑轮的枚举几何
  • 批准号:
    567867-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 12.49万
  • 项目类别:
    Postdoctoral Fellowships
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了