Explicit Approaches to the Birch and Swinnerton-Dyer Conjecture
Birch 和 Swinnerton-Dyer 猜想的明确方法
基本信息
- 批准号:0653968
- 负责人:
- 金额:$ 13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-09-01 至 2010-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
ABSTRACT for award DMS-0653968 of SteinThe Birch and Swinnerton-Dyer conjecture is one of the most central unsolved problems in number theory. The proposed project aims to study this conjecture from two perspectives. First, the PI intends to continue his program to explicitly verify the full conjecture in many specific cases using explicit computations with Iwasawa theory, Euler systems, L-functions, and Galois cohomology; this work simultaneously motivates the development of new algorithms and the refinement of existing theorems. Second, the PI plans to carry out a theoretical and computational study of properties of Kolyvagin's Euler system of Heegner points, with the hope of carrying forward several of the ideas Kolyvagin left unfinished in the early 1990s.Elliptic curves play a central role in modern number theory and arithmetic geometry. For example, Andrew Wiles proved Fermat's Last Theorem by showing that the elliptic curve attached by Gerhard Frey to a counterexample to Fermat's claim would be attached to a modular form, and that this modular form cannot exist. Our understanding of the world of elliptic curves is extensive, but many questions remain unresolved. Perhaps the most central unsolved problem is the Birch and Swinnerton-Dyer conjecture, which relates many of the arithmetic invariants of an elliptic curve. The goals of this project are to provide substantial new data, techniques, and ideas relevant to attacks on the Birch and Swinnerton-Dyer conjecture.
关于斯坦奖DMS-0653968,白桦和斯温纳顿-戴尔猜想是数论中最核心的悬而未决的问题之一。拟议的项目旨在从两个角度研究这一猜想。首先,PI打算继续他的计划,在许多特定情况下使用岩泽理论、欧拉系统、L函数和伽罗华上同调的显式计算来显式地验证完整的猜想;这项工作同时推动了新算法的发展和现有定理的完善。其次,PI计划对柯利威因的海格纳点的欧拉系的性质进行理论和计算研究,以期发扬柯利文在20世纪90年代初留下的几个未完成的思想。椭圆曲线在现代数论和算术几何中起着核心作用。例如,安德鲁·怀尔斯证明了费马最后定理,证明了格哈德·弗雷在费马主张的反例中附加的椭圆曲线将附在模形式上,并且这种模形式不存在。我们对椭圆曲线世界的理解是广泛的,但许多问题仍然没有解决。也许最核心的悬而未决的问题是Birch和Swinnerton-Dyer猜想,它与椭圆曲线的许多算术不变量有关。这个项目的目标是提供大量新的数据、技术和想法,与攻击Birch和Swinnerton-Dyer猜想有关。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
William Stein其他文献
118 Manganese guided cellular MRI enables evaluation of human stromal cell viability
- DOI:
10.1186/1532-429x-10-s1-a19 - 发表时间:
2008-10-22 - 期刊:
- 影响因子:
- 作者:
Mayumi Yamada;Paul T Gurney;William Stein;Pratima Kundu;Alan Smith;Robert C Robbins;Phillip C Yang - 通讯作者:
Phillip C Yang
Outsourcing of Insurance Claims: A U.K. Case Study
- DOI:
10.1111/1468-0440.00241 - 发表时间:
2003-07-01 - 期刊:
- 影响因子:3.300
- 作者:
John Hood;William Stein - 通讯作者:
William Stein
A second documented record of Spectacled Petrel Procellaria conspicillata in Argentine waters
- DOI:
10.1007/bf03544287 - 发表时间:
2015-12-30 - 期刊:
- 影响因子:0.800
- 作者:
Juan Pablo Seco Pon;William Stein - 通讯作者:
William Stein
An Apparent Second Plateau in the UBVRIJHK Eruption Light Curve of the Recurrent Nova U Sco
复发性新星 U Sco 的 UBVRIJHK 喷发光曲线中明显的第二个平台
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
A. Pagnotta;B. Schaefer;G. Handler;W. Allen;T. Campbell;T. Krajci;B. Monard;R. Rea;T. Richards;G. Roberts;William Stein;C. Stockdale;J. McCormick;S. Dvorak;T. Gomez;B. Harris;A. Henden;G. Sjoberg;T. Tan;A. Oksanen - 通讯作者:
A. Oksanen
Modular forms, a computational approach
模块化形式,一种计算方法
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
William Stein - 通讯作者:
William Stein
William Stein的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('William Stein', 18)}}的其他基金
Collaborative Research: SI2-SSE: Sage-Combinat: Developing and Sharing Open Source Software for Algebraic Combinatorics
合作研究:SI2-SSE:Sage-Combinat:开发和共享代数组合开源软件
- 批准号:
1147802 - 财政年份:2012
- 资助金额:
$ 13万 - 项目类别:
Standard Grant
Explicit Approaches to Elliptic Curves, Modular Forms and Modular Abelian Varieties
椭圆曲线、模形式和模阿贝尔簇的显式方法
- 批准号:
1161226 - 财政年份:2012
- 资助金额:
$ 13万 - 项目类别:
Standard Grant
Collaborative Research: UTMOST: Undergraduate Teaching in Mathematics with Open Software and Textbooks
合作研究:UTMOST:利用开放软件和教科书进行本科数学教学
- 批准号:
1020378 - 财政年份:2010
- 资助金额:
$ 13万 - 项目类别:
Standard Grant
Sage: Unifying Mathematical Software for Scientists, Engineers, and Mathematicians
Sage:为科学家、工程师和数学家提供统一的数学软件
- 批准号:
1015114 - 财政年份:2010
- 资助金额:
$ 13万 - 项目类别:
Standard Grant
FRG: L-functions and Modular Forms
FRG:L 函数和模块化形式
- 批准号:
0757627 - 财政年份:2008
- 资助金额:
$ 13万 - 项目类别:
Continuing Grant
SCREMS: The Computational Frontiers of Number Theory, Representation Theory, and Mathematical Physics
SCEMS:数论、表示论和数学物理的计算前沿
- 批准号:
0821725 - 财政年份:2008
- 资助金额:
$ 13万 - 项目类别:
Standard Grant
SAGE: Software for Algebra and Geometry Experimentation
SAGE:代数和几何实验软件
- 批准号:
0713225 - 财政年份:2007
- 资助金额:
$ 13万 - 项目类别:
Standard Grant
Explicit Approaches to Modular Forms and Modular Abelian Varieties
模形式和模阿贝尔簇的显式方法
- 批准号:
0729340 - 财政年份:2006
- 资助金额:
$ 13万 - 项目类别:
Continuing Grant
Explicit Approaches to Modular Forms and Modular Abelian Varieties
模形式和模阿贝尔簇的显式方法
- 批准号:
0555776 - 财政年份:2005
- 资助金额:
$ 13万 - 项目类别:
Continuing Grant
Explicit Approaches to Modular Forms and Modular Abelian Varieties
模形式和模阿贝尔簇的显式方法
- 批准号:
0400386 - 财政年份:2004
- 资助金额:
$ 13万 - 项目类别:
Continuing Grant
相似国自然基金
Lagrangian origin of geometric approaches to scattering amplitudes
- 批准号:24ZR1450600
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Investigating bioengineering approaches to produce immuno-modulatory mesenchymal stromal cells and their extracellular vesicle
研究生产免疫调节间充质基质细胞及其细胞外囊泡的生物工程方法
- 批准号:
2608627 - 财政年份:2025
- 资助金额:
$ 13万 - 项目类别:
Studentship
New approaches to training deep probabilistic models
训练深度概率模型的新方法
- 批准号:
2613115 - 财政年份:2025
- 资助金额:
$ 13万 - 项目类别:
Studentship
Collaborative Research: BoCP-Implementation: Alpine plants as a model system for biodiversity dynamics in a warming world: Integrating genetic, functional, and community approaches
合作研究:BoCP-实施:高山植物作为变暖世界中生物多样性动态的模型系统:整合遗传、功能和社区方法
- 批准号:
2326020 - 财政年份:2024
- 资助金额:
$ 13万 - 项目类别:
Continuing Grant
Collaborative Research: BoCP-Implementation: Alpine plants as a model system for biodiversity dynamics in a warming world: Integrating genetic, functional, and community approaches
合作研究:BoCP-实施:高山植物作为变暖世界中生物多样性动态的模型系统:整合遗传、功能和社区方法
- 批准号:
2326021 - 财政年份:2024
- 资助金额:
$ 13万 - 项目类别:
Standard Grant
Multiscale Approaches And Scalability Within Climate Change-heritage Risk Assessments
气候变化遗产风险评估中的多尺度方法和可扩展性
- 批准号:
AH/Z000084/1 - 财政年份:2024
- 资助金额:
$ 13万 - 项目类别:
Research Grant
Dynamical Approaches to Number Theory and Additive Combinatorics
数论和加法组合学的动态方法
- 批准号:
EP/Y014030/1 - 财政年份:2024
- 资助金额:
$ 13万 - 项目类别:
Research Grant
C-NEWTRAL: smart CompreheNsive training to mainstrEam neW approaches for climaTe-neutRal cities through citizen engAgement and decision-making support
C-NEWTRAL:智能综合培训,通过公民参与和决策支持将气候中和城市的新方法纳入主流
- 批准号:
EP/Y032640/1 - 财政年份:2024
- 资助金额:
$ 13万 - 项目类别:
Research Grant
NEM-EMERGE: An integrated set of novel approaches to counter the emergence and proliferation of invasive and virulent soil-borne nematodes
NEM-EMERGE:一套综合的新方法来对抗入侵性和剧毒土传线虫的出现和扩散
- 批准号:
10080598 - 财政年份:2024
- 资助金额:
$ 13万 - 项目类别:
EU-Funded
PINK - Provision of Integrated Computational Approaches for Addressing New Markets Goals for the Introduction of Safe-and-Sustainable-by-Design Chemicals and Materials
PINK - 提供综合计算方法来解决引入安全和可持续设计化学品和材料的新市场目标
- 批准号:
10097944 - 财政年份:2024
- 资助金额:
$ 13万 - 项目类别:
EU-Funded
Stuck in the mud: addressing the fine sediment conundrum with multiscale and interdisciplinary approaches to support global freshwater biodiversity
陷入困境:采用多尺度和跨学科方法解决细小沉积物难题,支持全球淡水生物多样性
- 批准号:
MR/Y020200/1 - 财政年份:2024
- 资助金额:
$ 13万 - 项目类别:
Fellowship