Modern Mathematical Programming Approaches to Obtain Deeper Insights into Machine Scheduling
现代数学编程方法可以更深入地了解机器调度
基本信息
- 批准号:0700044
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-09-01 至 2011-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The objective of this research is to study the difficult (i.e. NP-hard) machine scheduling problems, using mathematical programming approaches. This study will focus on the following four classes of scheduling problems: (1) scheduling with precedence constraints, (2) scheduling with incomplete information, (3) scheduling parallel jobs, and (4) scheduling in shop environments. The theory of mathematical programming will be used as a tool to establish lower bounds on the cost of optimal schedules, to develop insight on the structure of optimal and near-optimal schedules, and to aid in the design of efficient (i.e. polynomial-time) algorithms that produce schedules that are guaranteed to be reasonably close to optimal. In the process, novel mathematical programming formulations for these problems will be developed. The results of this research will be disseminated in a series of book chapters, and in a new course in scheduling designed for doctoral students in computer science and operations research.The primary goal of this research is to gain a better theoretical understanding of the four aforementioned classes of scheduling problems, both structurally and algorithmically. Success in achieving these goals has some anticipated side benefits. Any new structural or algorithmic ideas, as well as any new mathematical programming formulations developed in this research may lead to better heuristics for related, but more complex, practical scheduling problems. In particular, good lower bounds are critical to the performance of algorithmic schemes such as cutting plane, branch-and-bound, and branch-and-cut methods. In addition, any new mathematical proof techniques pioneered in this work may be useful more generally, for advancing the theory of various other combinatorial optimization problems.
本研究的目的是研究困难(即NP-hard)机器调度问题,使用数学规划方法。本研究将重点研究以下四类调度问题:(1)有优先约束的调度问题,(2)不完全信息的调度问题,(3)并行作业调度问题,以及(4)车间环境下的调度问题。数学规划理论将被用作一种工具,用于建立最优调度成本的下限,开发最优和接近最优调度结构的洞察力,并帮助设计高效(即多项式时间)算法,以产生保证合理接近最优的调度。在这个过程中,这些问题的新的数学规划公式将被开发出来。这项研究的结果将在一系列的书籍章节中传播,并在为计算机科学和运筹学博士生设计的新课程中传播。本研究的主要目的是从结构和算法两方面对上述四类调度问题有更好的理论认识。成功实现这些目标会带来一些预期的附带好处。本研究中提出的任何新的结构或算法思想,以及任何新的数学规划公式,都可能为相关但更复杂的实际调度问题提供更好的启发式方法。特别是,良好的下界对于切割平面、分支定界和分支切割等算法方案的性能至关重要。此外,在这项工作中开创的任何新的数学证明技术可能更普遍地有用,用于推进各种其他组合优化问题的理论。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andreas Schulz其他文献
Relational Reasoning about Numbers and Operations – Foundation for Calculation Strategy Use in Multi-Digit Multiplication and Division
关于数字和运算的关系推理 - 多位数乘法和除法计算策略使用的基础
- DOI:
10.1080/10986065.2018.1442641 - 发表时间:
2018 - 期刊:
- 影响因子:1.6
- 作者:
Andreas Schulz - 通讯作者:
Andreas Schulz
Correction to: Self‑reported cardiovascular health of teachers: results from the 5‑year follow‑up of the Gutenberg Health Study cohort
- DOI:
10.1007/s00420-021-01747-2 - 发表时间:
2021-07-30 - 期刊:
- 影响因子:2.400
- 作者:
Merle Riechmann‑Wolf;Sylvia Jankowiak;Andreas Schulz;Janice Hegewald;Karla Romero Starke;Falk Liebers;Karin Rossnagel;Alicia Poplawski;Natalie Arnold;Matthias Nübling;Andreas Seidler;Manfred Beutel;Norbert Pfeiffer;Karl Lackner;Thomas Münzel;Kathrin Bogner;Philipp S. Wild;Ute Latza;Stephan Letzel - 通讯作者:
Stephan Letzel
Learning trajectories towards strategy proficiency in multi-digit division – A latent transition analysis of strategy and error profiles
多位数除法战略熟练程度的学习轨迹——战略和错误概况的潜在转变分析
- DOI:
10.1016/j.lindif.2018.04.014 - 发表时间:
2018 - 期刊:
- 影响因子:3.6
- 作者:
Andreas Schulz;Timo Leuders - 通讯作者:
Timo Leuders
Assessing student teachers’ procedural fluency and strategic competence in operating and mathematizing with natural and rational numbers
- DOI:
10.1007/s10857-023-09590-7 - 发表时间:
2023-06-22 - 期刊:
- 影响因子:1.800
- 作者:
Andreas Schulz - 通讯作者:
Andreas Schulz
Comparison of transcatheter aortic valve implantation with the newest-generation Sapien 3 vs. Direct Flow Medical valve in a single center cohort
- DOI:
10.1016/j.ijcard.2017.01.032 - 发表时间:
2017-04-01 - 期刊:
- 影响因子:
- 作者:
Eberhard Schulz;Alexander Jabs;Alexander Tamm;Patrick Herz;Andreas Schulz;Tommaso Gori;Stephan von Bardeleben;Walter Kasper-König;Ulrich Hink;Christian-Friedrich Vahl;Thomas Münzel - 通讯作者:
Thomas Münzel
Andreas Schulz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andreas Schulz', 18)}}的其他基金
ITR/Collaborative Research: (ECS)-(dmc) - Collaborative Logistics
ITR/协作研究:(ECS)-(dmc) - 协作物流
- 批准号:
0426686 - 财政年份:2004
- 资助金额:
-- - 项目类别:
Standard Grant
相似海外基金
Study on Renewable Energy Integration with Mathematical Programming Model considering Electricity and Non-Electricity Sectors
考虑电力与非电力部门的可再生能源并网数学规划模型研究
- 批准号:
20H02679 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Study on combination of mathematical programming and evolutionary multi-point methods
数学规划与进化多点方法结合的研究
- 批准号:
20K11970 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: Collaborative Partnership to Teach Mathematical Reasoning Through Computer Programming (CPR2)
合作研究:通过计算机编程教授数学推理的合作伙伴关系(CPR2)
- 批准号:
1933677 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Standard Grant
Improved Mathematical Programming Techniques for Approximation Algorithms
改进近似算法的数学编程技术
- 批准号:
RGPIN-2015-06496 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: : Collaborative Partnership to Teach Mathematical Reasoning Through Computer Programming (CPR2)
合作研究::通过计算机编程教授数学推理的合作伙伴关系(CPR2)
- 批准号:
1933678 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Standard Grant
Research on resource allocation method for service chaining based on approach of applied mathematical programming
基于应用数学规划方法的服务链资源分配方法研究
- 批准号:
19K14980 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
AI Planning and Mathematical Programming
人工智能规划与数学规划
- 批准号:
RGPIN-2015-05072 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
AF: Small: Faster and Better Algorithms for, and via, Mathematical Programming Relaxations
AF:小:更快更好的算法,并通过数学编程松弛
- 批准号:
1910149 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Standard Grant
Behavioural-based mathematical programming: algorithmics and applications
基于行为的数学规划:算法和应用
- 批准号:
RGPIN-2017-05073 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
AI Planning and Mathematical Programming
人工智能规划与数学规划
- 批准号:
RGPIN-2015-05072 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual