Algebraic Structures Related to Quantum Field Theory

与量子场论相关的代数结构

基本信息

  • 批准号:
    0701011
  • 负责人:
  • 金额:
    $ 10.97万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-08-01 至 2011-07-31
  • 项目状态:
    已结题

项目摘要

The present proposal deals with several algebraic structures motivated by two-dimensional conformal field theory, as well as with higher-dimensional analogs related to quantum field theory in space-time dimension higher than two. The structures investigated are: vertex algebras, (non-linear) Lie conformal algebras, Lie pseudoalgebras, and vertex (Lie) algebras in higher dimensions. Three main projects are proposed. The first is to classify certain non-linear Lie conformal algebras with three generators, which can be viewed as non-linear deformations of affine sl(2). This will lead to the discovery of new interesting vertex algebras. The second project is to classify the irreducible representations of simple Lie pseudoalgebras of type H and K, extending previous work of the PI and collaborators that settled types W and S. This project is closely related to the representation theory of Lie-Cartan algebras of vector fields, and it involves pseudoalgebra versions of the hamiltonian and contact de Rham complexes. The third project develops further the theory of vertex algebras in higher dimensions introduced previously by N.M. Nikolov, with the long-term goal of constructing examples that lead to nontrivial models of axiomatic quantum field theory. The PI will continue his investigation of the vertex Lie algebras in higher dimensions introduced by him and Nikolov. Another approach proposed here is to reconstruct a conformal vertex algebra in higher dimensions from its one-dimensional restriction and the action of the Lie algebra of infinitesimal conformal transformations.Lie groups, named after the 19th century Norwegian mathematician Sophus Lie, provide a mathematical description of the notion of continuous symmetry and play a prominent role in mathematics and physics. Related objects, Lie algebras, describe infinitesimal transformations. The PI investigates infinite-dimensional Lie algebras and related algebraic structures, which first appeared in an algebraic approach to quantum field theory. The goal of this research is to develop further the mathematical theory of such algebras and at the same time discover new concrete examples, which will lead to the construction of new models in quantum field theory and thus will deepen our understanding of the nature.
本文讨论了由二维共形场理论驱动的几种代数结构,以及与量子场理论相关的时空维度高于2的高维类似物。研究的结构有:顶点代数、(非线性)李共形代数、李伪代数和高维顶点(李)代数。提出了三个主要项目。首先对具有三个生成器的非线性李共形代数进行了分类,这些代数可以看作是仿射sl(2)的非线性变形。这将导致新的有趣的顶点代数的发现。第二个项目是对H型和K型简单李伪代数的不可约表示进行分类,扩展了PI和合作者先前解决W型和s型的工作。该项目与向量场的Lie- cartan代数的表示理论密切相关,它涉及哈密顿和接触de Rham复形的伪代数版本。第三个项目进一步发展了N.M. Nikolov之前介绍的高维顶点代数理论,其长期目标是构建导致公理量子场论非平凡模型的例子。PI将继续研究由他和Nikolov引入的高维顶点李代数。本文提出的另一种方法是从高维共形顶点代数的一维限制和李代数的无限小共形变换的作用中重构高维共形顶点代数。李群以19世纪挪威数学家Sophus Lie的名字命名,它提供了对连续对称概念的数学描述,在数学和物理学中发挥着重要作用。相关对象,李代数,描述无穷小变换。PI研究无限维李代数和相关的代数结构,它们首次出现在量子场论的代数方法中。本研究的目标是进一步发展这些代数的数学理论,同时发现新的具体例子,这将导致量子场论中新的模型的构建,从而加深我们对自然的理解。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bojko Bakalov其他文献

An operadic approach to vertex algebra and Poisson vertex algebra cohomology
  • DOI:
    10.1007/s11537-019-1825-3
  • 发表时间:
    2019-06-21
  • 期刊:
  • 影响因子:
    1.500
  • 作者:
    Bojko Bakalov;Alberto De Sole;Reimundo Heluani;Victor G. Kac
  • 通讯作者:
    Victor G. Kac

Bojko Bakalov的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bojko Bakalov', 18)}}的其他基金

International Conference Symmetries in Mathematics and Physics II
数学和物理对称性国际会议 II
  • 批准号:
    1303093
  • 财政年份:
    2013
  • 资助金额:
    $ 10.97万
  • 项目类别:
    Standard Grant

相似海外基金

Pseudorandom numbers and algebraic studies on related mathematical structures
伪随机数及相关数学结构的代数研究
  • 批准号:
    23K03033
  • 财政年份:
    2023
  • 资助金额:
    $ 10.97万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Applications of advances in computer algebra to studying classical integrable systems and related algebraic structures
应用计算机代数的进展来研究经典可积系统和相关代数结构
  • 批准号:
    RGPIN-2017-06330
  • 财政年份:
    2022
  • 资助金额:
    $ 10.97万
  • 项目类别:
    Discovery Grants Program - Individual
Algebraic and geometric structures related to classical and quantum integrable systems
与经典和量子可积系统相关的代数和几何结构
  • 批准号:
    DDG-2022-00024
  • 财政年份:
    2022
  • 资助金额:
    $ 10.97万
  • 项目类别:
    Discovery Development Grant
Algebraic and geometric structures related to integrable systems
与可积系统相关的代数和几何结构
  • 批准号:
    RGPIN-2014-05062
  • 财政年份:
    2021
  • 资助金额:
    $ 10.97万
  • 项目类别:
    Discovery Grants Program - Individual
Applications of advances in computer algebra to studying classical integrable systems and related algebraic structures
应用计算机代数的进展来研究经典可积系统和相关代数结构
  • 批准号:
    RGPIN-2017-06330
  • 财政年份:
    2021
  • 资助金额:
    $ 10.97万
  • 项目类别:
    Discovery Grants Program - Individual
Applications of advances in computer algebra to studying classical integrable systems and related algebraic structures
应用计算机代数的进展来研究经典可积系统和相关代数结构
  • 批准号:
    RGPIN-2017-06330
  • 财政年份:
    2020
  • 资助金额:
    $ 10.97万
  • 项目类别:
    Discovery Grants Program - Individual
Algebraic and geometric structures related to integrable systems
与可积系统相关的代数和几何结构
  • 批准号:
    RGPIN-2014-05062
  • 财政年份:
    2020
  • 资助金额:
    $ 10.97万
  • 项目类别:
    Discovery Grants Program - Individual
Study of algebraic methods for Morita dual of finite tensor categories and related algebraic structures
有限张量范畴Morita对偶的代数方法及相关代数结构研究
  • 批准号:
    20K03520
  • 财政年份:
    2020
  • 资助金额:
    $ 10.97万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Applications of advances in computer algebra to studying classical integrable systems and related algebraic structures
应用计算机代数的进展来研究经典可积系统和相关代数结构
  • 批准号:
    RGPIN-2017-06330
  • 财政年份:
    2019
  • 资助金额:
    $ 10.97万
  • 项目类别:
    Discovery Grants Program - Individual
Applications of advances in computer algebra to studying classical integrable systems and related algebraic structures
应用计算机代数的进展来研究经典可积系统和相关代数结构
  • 批准号:
    RGPIN-2017-06330
  • 财政年份:
    2018
  • 资助金额:
    $ 10.97万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了