Pfaffian orientations, graph coloring and the theory of Riemann surfaces on graphs

图上的普法夫方向、图着色和黎曼曲面理论

基本信息

  • 批准号:
    0701033
  • 负责人:
  • 金额:
    $ 10.33万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-09-01 至 2007-11-30
  • 项目状态:
    已结题

项目摘要

The central problem of this proposal is characterization of Pfaffian graphs. Pfaffian graphs are important as the problem of enumeration of perfect matchings can be solved in polynomial time in a Pfaffian graph, while the corresponding problem for general graphs is #P-complete. Among other approaches to structural characterization of Pfaffian graphs, the PI proposes to continue his work on a general matching minor theory, an analogue of celebrated graph minor theory of Robertson and Seymour. Such a theory would have many potential theoretical and algorithmic applications beyond the theory of Pfaffian graphs. The PI also proposes to continue his research on three other types of graph theoretical problems. The first one is connected to the Four Color Theorem, a problem that remained open for over a hundred years and lies at the heart of the modern graph theory. The second type of problems involves circular colorings, a relatively new concept that has been studied extensively in recent years and has both practical motivations and theoretical applications to the theory of graph coloring. Thirdly, the investigation of graph theoretical analogues of the results in the theory of Riemann surfaces is proposed. The PI, in collaboration with Matthew Baker, has recently been able to prove a Riemann-Roch theorem for graphs. The Riemann-Roch theorem is widely regarded as the most important result in the theory of Riemann surfaces. The discovery of its analogue demonstrated an interesting connection between Riemann surfaces and graphs and led to further open problems with potential applications outside graph theory.This work belongs to the area of graph theory. Graph theory can be used to model various objects in diverse fields, ranging from telephone networks and Internet to molecular structures and crystal lattices. The problems considered in this proposal have applications in physics, chemistry and computer science, as well as potential applications to practical problems of periodic scheduling and computer chip design. Achieving results on the proposed research problems would advance our understanding of these applications.
这个建议的中心问题是Pfweian图的特征。普夫图是重要的,因为在普夫图中完美匹配的计数问题可以在多项式时间内解决,而一般图的相应问题是#P-完全的。在其他方法的结构特征的Pfavian图,PI建议继续他的工作一般匹配未成年人的理论,模拟著名的图未成年人理论的罗伯逊和西摩。这样的理论将有许多潜在的理论和算法的应用超出理论的Pfweian图。PI还建议继续研究其他三种类型的图论问题。第一个问题与四色定理有关,这是一个一百多年来一直悬而未决的问题,也是现代图论的核心。第二类问题涉及循环着色,这是一个相对较新的概念,近年来得到了广泛的研究,对图着色理论既有实际的动机,也有理论上的应用。第三,提出了黎曼曲面理论中结果的图论类似研究。PI与Matthew Baker合作,最近能够证明图的Riemann-Roch定理。Riemann-Roch定理被广泛认为是黎曼曲面理论中最重要的结果。其类似物的发现表明了黎曼曲面和图之间的有趣联系,并导致了进一步的开放问题与潜在的应用以外的图论。这项工作属于该地区的图论。图论可以用来模拟不同领域的各种对象,从电话网络和互联网到分子结构和晶格。在这个建议中考虑的问题在物理,化学和计算机科学中的应用,以及潜在的应用到实际问题的周期调度和计算机芯片设计。在提出的研究问题上取得成果将促进我们对这些应用的理解。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sergey Norin其他文献

MINORS IN LARGE 6-CONNECTED GRAPHS
大 6 连通图中的未成年人
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    K. Kawarabayashi;Sergey Norin;R. Thomas;Paul Wollan
  • 通讯作者:
    Paul Wollan
Matching structure and Pfa-an orientations of graphs
  • DOI:
  • 发表时间:
    2005-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sergey Norin
  • 通讯作者:
    Sergey Norin
Harmonic morphisms and hyperelliptic graphs
调和态射和超椭圆图
  • DOI:
    10.1093/imrn/rnp037
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Baker;Sergey Norin
  • 通讯作者:
    Sergey Norin
MINORS IN 6-CONNECTED GRAPHS OF BOUNDED TREEWIDTH
有界树宽的 6 连通图中的未成年人
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    K. Kawarabayashi;Sergey Norin
  • 通讯作者:
    Sergey Norin
Connectivity and choosability of graphs with no emK/emsubemt/em/sub minor
无 emK 子式图的连通性与可选性

Sergey Norin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sergey Norin', 18)}}的其他基金

Pfaffian orientations, graph coloring and the theory of Riemann surfaces on graphs
图上的普法夫方向、图着色和黎曼曲面理论
  • 批准号:
    0803214
  • 财政年份:
    2007
  • 资助金额:
    $ 10.33万
  • 项目类别:
    Continuing Grant

相似海外基金

Reconsideration of the Neogene stress history in NW Kyushu by paleostress analyses of 3D dike orientations
通过 3D 堤坝方向的古应力分析重新考虑九州西北部的新近纪应力历史
  • 批准号:
    23KJ1210
  • 财政年份:
    2023
  • 资助金额:
    $ 10.33万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Understanding and Predicting Molecular Orientations for Organic Optoelectronic Device Applications
了解和预测有机光电器件应用的分子取向
  • 批准号:
    504658-2017
  • 财政年份:
    2022
  • 资助金额:
    $ 10.33万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Symmetry-restored two-centre self-consistent approach to fission with arbitrary deformations, orientations, and distance of fragments
具有任意变形、方向和碎片距离的对称性恢复的两中心自洽裂变方法
  • 批准号:
    ST/W005832/1
  • 财政年份:
    2022
  • 资助金额:
    $ 10.33万
  • 项目类别:
    Research Grant
Searching for preferential orientations of magnetic fossils in rocks: possible clues to paleomagnetism and bacterial ecology
寻找岩石中磁性化石的优先方向:古地磁学和细菌生态学的可能线索
  • 批准号:
    22K18744
  • 财政年份:
    2022
  • 资助金额:
    $ 10.33万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Player Connected: Understanding player orientations to videogame environments
玩家互联:了解玩家对视频游戏环境的定位
  • 批准号:
    2764542
  • 财政年份:
    2022
  • 资助金额:
    $ 10.33万
  • 项目类别:
    Studentship
High School Research Initiative Expansion Project
高中研究计划扩展项目
  • 批准号:
    10450409
  • 财政年份:
    2022
  • 资助金额:
    $ 10.33万
  • 项目类别:
High School Research Initiative Expansion Project
高中研究计划扩展项目
  • 批准号:
    10618968
  • 财政年份:
    2022
  • 资助金额:
    $ 10.33万
  • 项目类别:
Impact de l'attention sur le traitement des orientations spatiales en traitement de visages
注意力对空间方向和面部特征的影响
  • 批准号:
    549869-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 10.33万
  • 项目类别:
    University Undergraduate Student Research Awards
Study on structures and orientations of proteins in lipid bilayers by heterodyne-detected vibrational SFG spectroscopy
外差检测振动 SFG 光谱研究脂质双层中蛋白质的结构和方向
  • 批准号:
    19K05362
  • 财政年份:
    2019
  • 资助金额:
    $ 10.33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Singular topological field theory and classifying spaces of derived manifolds
奇异拓扑场论和导出流形的空间分类
  • 批准号:
    19K14522
  • 财政年份:
    2019
  • 资助金额:
    $ 10.33万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了