Singular topological field theory and classifying spaces of derived manifolds

奇异拓扑场论和导出流形的空间分类

基本信息

  • 批准号:
    19K14522
  • 负责人:
  • 金额:
    $ 1万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
  • 财政年份:
    2019
  • 资助国家:
    日本
  • 起止时间:
    2019-04-01 至 2020-03-31
  • 项目状态:
    已结题

项目摘要

In my research plan I proposed a project whose objective was to assign cycles of integration in bordism theory to derived manifolds with tangential structures (such as orientations, spin structures, and so on), enhancing the theory of "virtual cycles" developed for use in Gromov-Witten theory and also Spivak's bordism theory of unoriented derived manifolds. Results in this direction would be a stepping stone to defining "enhanced" Gromov-Witten type invariants, with many conceivable applications.I succeeded in proving the first main statement outlined in the application, that is, that families of derived manifolds with tangential structures are classified by a well-known object, a "Thom spectrum." This means that if a moduli space can be given the structure of a derived manifold --- something which is the case in many important examples --- it can be assigned a cycle in a bordism ring, which can be thought of as a more structured version of the notion of "counting points." Hence, this work is likely to have ramifications in Floer theory, symplectic field theory, and beyond.I spoke on my results at an international conference in Osaka in November. Since the grant terminated early, I did not have time to write up and publish the arguments, so the paper remains in draft form. I continue to work on it and aim to publish before the grant would have terminated given its full length, next February.
在我的研究计划中,我提出了一个项目,其目标是将边界论中的积分循环分配给具有切向结构(如方向、自旋结构等)的派生流形,从而增强了为用于Gromov-Witten理论和斯皮瓦克的无定向派生流形的边界主义理论而开发的“虚拟循环”理论。这个方向的结果将是定义“增强型”Gromov-Witten类型不变量的垫脚石,具有许多可以想象的应用。我成功地证明了应用程序中概述的第一个主要陈述,即具有切向结构的派生流形的族由一个众所周知的对象分类,即“Thom谱”。这意味着,如果一个模空间可以被赋予派生流形的结构-在许多重要的例子中就是这样-它可以被分配到一个有界环中的一个圈,这可以被认为是一个更结构化的“计点”概念的版本。因此,这项工作可能会对弗洛尔理论、辛场理论等产生影响。11月,我在大阪的一个国际会议上谈到了我的结果。由于拨款提前终止,我没有时间写出和发表论点,所以论文仍然是草稿形式。我还在继续写这本书,我的目标是在明年2月这笔拨款终止之前发表。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The operad that corepresents enrichment
核心呈现丰富性的操作
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kitamura;M.;Sasaki;K.;Ishii;T.;& Watanabe;K.;Andrew W.Macpherson
  • 通讯作者:
    Andrew W.Macpherson
Symmetries of enriched higher category theory
丰富的高范畴论的对称性
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kitamura;M.;Sasaki;K.;Ishii;T.;& Watanabe;K.;Andrew W.Macpherson;土谷昭善;大矢 浩徳;佐々木恭志郎・朱思斉・姜月・錢コン・山田祐樹;Andrew W.Macpherson
  • 通讯作者:
    Andrew W.Macpherson
Field theory, derived geometry, and virtual cycles
场论、导出几何和虚拟循环
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kitamura;M.;Sasaki;K.;Ishii;T.;& Watanabe;K.;Andrew W.Macpherson;土谷昭善;大矢 浩徳;佐々木恭志郎・朱思斉・姜月・錢コン・山田祐樹;Andrew W.Macpherson;Akiyoshi Tsuchiya;大矢 浩徳;佐々木恭志郎・米満文哉・山田祐樹;Andrew W.Macpherson
  • 通讯作者:
    Andrew W.Macpherson
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Macpherson Andrew其他文献

Macpherson Andrew的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Representation Theory and Symplectic Geometry Inspired by Topological Field Theory
拓扑场论启发的表示论和辛几何
  • 批准号:
    2401178
  • 财政年份:
    2024
  • 资助金额:
    $ 1万
  • 项目类别:
    Standard Grant
Hyperkähler structures in topological field theory
拓扑场论中的超克勒结构
  • 批准号:
    1941556
  • 财政年份:
    2017
  • 资助金额:
    $ 1万
  • 项目类别:
    Studentship
Geometric quantum representations, iterated integrals and applications to topological field theory
几何量子表示、迭代积分及其在拓扑场论中的应用
  • 批准号:
    16H03931
  • 财政年份:
    2016
  • 资助金额:
    $ 1万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Applications of quantum groups to 4-dimensional topological field theory
量子群在 4 维拓扑场论中的应用
  • 批准号:
    1974971
  • 财政年份:
    2015
  • 资助金额:
    $ 1万
  • 项目类别:
    Studentship
CAREER: Subfactors, Tensor Categories, and Local Topological Field Theory
职业:子因子、张量类别和局部拓扑场论
  • 批准号:
    1454767
  • 财政年份:
    2015
  • 资助金额:
    $ 1万
  • 项目类别:
    Continuing Grant
Geometry of moduli spaces and application to topological field theory
模空间的几何及其在拓扑场论中的应用
  • 批准号:
    24540045
  • 财政年份:
    2012
  • 资助金额:
    $ 1万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Algebraic structures in topological field theory
拓扑场论中的代数结构
  • 批准号:
    0906369
  • 财政年份:
    2009
  • 资助金额:
    $ 1万
  • 项目类别:
    Standard Grant
Representation theory via topological field theory
通过拓扑场论的表示论
  • 批准号:
    0901114
  • 财政年份:
    2009
  • 资助金额:
    $ 1万
  • 项目类别:
    Standard Grant
Structure in Topological Field Theory
拓扑场论中的结构
  • 批准号:
    0709448
  • 财政年份:
    2007
  • 资助金额:
    $ 1万
  • 项目类别:
    Continuing Grant
New development of geometry based on topological field theory
基于拓扑场论的几何新发展
  • 批准号:
    18104001
  • 财政年份:
    2006
  • 资助金额:
    $ 1万
  • 项目类别:
    Grant-in-Aid for Scientific Research (S)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了