Nonlocal instabilities for the planar 3-body problem
平面三体问题的非局部不稳定性
基本信息
- 批准号:0701271
- 负责人:
- 金额:$ 25.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-07-01 至 2010-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The Newtonian three-body problem consists in studying the dynamics of three point masses moving in Euclidean space and mutually attracted under Newtonian gravitation. The description of instabilities in this system is one of the classical problems of mechanics. This project investigates instabilities for the model of the Sun-Jupiter-Asteroid system, assuming that the third body (the asteroid) has zero mass, that the second (Jupiter) is tiny in comparison with the first (the Sun), and that all three bodies move in a plane. Using the well-known Mather theory, the principal investigator seeks a mathematical proof of instability for this system. The stability of the Solar System is a fundamental issue in astronomy and mathematics. The general belief is that the system is not stable. As a first step toward understanding the physical situation it is extremely important to look for instabilities within mathematical models of the Solar System. The main thrust of this project represents an attempt to shed light on the complicated behavior of a mathematical model for the Sun-Jupiter-Asteroid system. The fundamental question for this model is whether a trajectory of the asteroid can be unstable (in oversimplified terms, whether its positions relative to the Sun and Jupiter can change a great deal over time). The principal investigator will try to find such instabilities and give a detailed mathematical description of them. This could eventually lead to a deeper understanding of instabilities in the entire Solar System, since the Sun and Jupiter are the bodies in it that have the largest impact on the motion of most of the planets.
牛顿三体问题研究的是在牛顿引力作用下,三个质点在欧氏空间中运动并相互吸引的动力学问题。该系统不稳定性的描述是力学的经典问题之一。该项目研究太阳-木星-小行星系统模型的不稳定性,假设第三个天体(小行星)质量为零,第二个天体(木星)与第一个天体(太阳)相比很小,所有三个天体都在一个平面上运动。利用著名的马瑟理论,主要研究人员寻求这个系统不稳定的数学证明。太阳系的稳定性是天文学和数学中的一个基本问题。人们普遍认为,这个系统并不稳定。作为理解物理情况的第一步,在太阳系的数学模型中寻找不稳定性是非常重要的。该项目的主要目的是试图揭示太阳-木星-小行星系统数学模型的复杂行为。这个模型的基本问题是小行星的轨迹是否会不稳定(简单地说,它相对于太阳和木星的位置是否会随着时间的推移而发生很大变化)。首席研究员将试图找到这样的不稳定性,并给出详细的数学描述。这可能最终导致对整个太阳系不稳定性的更深入理解,因为太阳和木星是其中对大多数行星运动影响最大的天体。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Vadim Kaloshin其他文献
WITH WHITE NOISE POTENTIAL ON COMPACT SURFACES
紧凑表面上可能存在白噪声
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
A. N. M. Ouzard;I. M. Z. Achhuber;Vadim Kaloshin;A. Mazzucato;Richard B. Melrose Massachussets;Frank Merle;Werner Müller;Igor Rodnianski;Terence Tao;Michael E. Taylor;Dan Virgil;J. Wright - 通讯作者:
J. Wright
Erratum to: On Some Invariants of Birkhoff Billiards Under Conjugacy
- DOI:
10.1134/s1560354722060107 - 发表时间:
2022-11-01 - 期刊:
- 影响因子:0.800
- 作者:
Comlan E. Koudjinan;Vadim Kaloshin - 通讯作者:
Vadim Kaloshin
Conservative homoclinic bifurcations and some applications
- DOI:
10.1134/s0081543809040063 - 发表时间:
2010-02-03 - 期刊:
- 影响因子:0.400
- 作者:
Anton Gorodetski;Vadim Kaloshin - 通讯作者:
Vadim Kaloshin
OF RADIATION FIELDS OF FREE WAVES
自由波的辐射场
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
I. Liangl;R. U. S. Hen;EI Lijuanw;Vadim Kaloshin;A. Mazzucato;Richard B. Melrose Massachussets;Frank Merle;Werner Müller;Igor Rodnianski;Terence Tao;Michael E. Taylor;Dan Virgil;J. Wright - 通讯作者:
J. Wright
On Some Invariants of Birkhoff Billiards Under Conjugacy
- DOI:
10.1134/s1560354722050021 - 发表时间:
2022-10-03 - 期刊:
- 影响因子:0.800
- 作者:
Comlan E. Koudjinan;Vadim Kaloshin - 通讯作者:
Vadim Kaloshin
Vadim Kaloshin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Vadim Kaloshin', 18)}}的其他基金
The Birkhoff Conjecture, Spectral Rigidity for Convex Reflecting Particle Systems, and Stochastic Arnold Diffusion
伯克霍夫猜想、凸反射粒子系统的光谱刚性和随机阿诺德扩散
- 批准号:
1702278 - 财政年份:2017
- 资助金额:
$ 25.35万 - 项目类别:
Continuing Grant
Summer School in Dynamical Systems at Maryland
马里兰州动力系统暑期学校
- 批准号:
1402759 - 财政年份:2014
- 资助金额:
$ 25.35万 - 项目类别:
Standard Grant
Arnol'd diffusion, Growth of Sobolev norms, Spectral rigidity for convex billiards
Arnold 扩散、Sobolev 范数的增长、凸台球的谱刚性
- 批准号:
1402164 - 财政年份:2014
- 资助金额:
$ 25.35万 - 项目类别:
Continuing Grant
A conference ``Recent Progress in Lagrangian and Hamiltonian dynamics''
“拉格朗日和哈密顿动力学的最新进展”会议
- 批准号:
1223714 - 财政年份:2012
- 资助金额:
$ 25.35万 - 项目类别:
Standard Grant
Arnold Diffusion, Quasi-ergodic Hypothesis, Instabilities for the Planar 3 Body Problem, and Central Configurations
阿诺德扩散、拟遍历假设、平面三体问题的不稳定性和中心配置
- 批准号:
1101510 - 财政年份:2011
- 资助金额:
$ 25.35万 - 项目类别:
Continuing Grant
Arnold Diffusion, Quasi-ergodic Hypothesis, Instabilities for the Planar 3 Body Problem, and Central Configurations
阿诺德扩散、拟遍历假设、平面三体问题的不稳定性和中心配置
- 批准号:
1157830 - 财政年份:2011
- 资助金额:
$ 25.35万 - 项目类别:
Continuing Grant
A semester on Celestial mechanics and Hamiltonian systems
天体力学和哈密顿系统一个学期
- 批准号:
1001892 - 财政年份:2010
- 资助金额:
$ 25.35万 - 项目类别:
Standard Grant
Generic Properties of Smooth Dynamical Systems
平滑动力系统的一般性质
- 批准号:
0300229 - 财政年份:2003
- 资助金额:
$ 25.35万 - 项目类别:
Standard Grant
相似海外基金
Microscale radiography of hydrodynamic instabilities mitigation in magnetized high-density laser plasmas
磁化高密度激光等离子体中流体动力学不稳定性缓解的微尺度射线照相
- 批准号:
24K06988 - 财政年份:2024
- 资助金额:
$ 25.35万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Investigating spatio-temporal instabilities in next-generation lasers
研究下一代激光器的时空不稳定性
- 批准号:
FT230100388 - 财政年份:2024
- 资助金额:
$ 25.35万 - 项目类别:
ARC Future Fellowships
Comprehensive numerical analysis of ICRF heating with fast-ion-driven instabilities in toroidal plasmas
对环形等离子体中快速离子驱动不稳定性的 ICRF 加热进行全面数值分析
- 批准号:
24K17032 - 财政年份:2024
- 资助金额:
$ 25.35万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Mathematical framework for novel non-porous viscous fingering instabilities
新型无孔粘性指法不稳定性的数学框架
- 批准号:
EP/Y021959/1 - 财政年份:2024
- 资助金额:
$ 25.35万 - 项目类别:
Research Grant
The Role of Complex Fluids on the Flow and Instabilities of Particle-Laden Liquids
复杂流体对含颗粒液体的流动和不稳定性的作用
- 批准号:
2335195 - 财政年份:2024
- 资助金额:
$ 25.35万 - 项目类别:
Standard Grant
Nonlocal Magneto-Curvature Instabilities and their Associated Nonlinear Transport in Astrophysical Disks
天体物理盘中的非局域磁曲率不稳定性及其相关的非线性输运
- 批准号:
2308839 - 财政年份:2023
- 资助金额:
$ 25.35万 - 项目类别:
Standard Grant
Elastic turbulence in micro canopy flows, effects of rheology and geometry
微冠层流动中的弹性湍流、流变学和几何形状的影响
- 批准号:
23K19103 - 财政年份:2023
- 资助金额:
$ 25.35万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Submesoscale instabilities and the forward energy cascade in seamount wakes
海山尾流中的亚尺度不稳定性和前向能量级联
- 批准号:
2242182 - 财政年份:2023
- 资助金额:
$ 25.35万 - 项目类别:
Standard Grant
GEM: Fundamental Properties of Dawnside Auroral Polarization Streams and Their Role in Magnetosphere-Ionosphere Instabilities and Dramatic Events
GEM:黎明极光偏振流的基本特性及其在磁层-电离层不稳定性和戏剧性事件中的作用
- 批准号:
2247034 - 财政年份:2023
- 资助金额:
$ 25.35万 - 项目类别:
Standard Grant














{{item.name}}会员




