Generic Properties of Smooth Dynamical Systems
平滑动力系统的一般性质
基本信息
- 批准号:0300229
- 负责人:
- 金额:$ 13.43万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-05-01 至 2006-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
PI: Vadim Kaloshin, CAL TechDMS-0300229The proposed project consists of two main parts. The first part is investigation generic properties of discrete dynamical systems (diffeomorphisms) on a compact manifold. We apply Newton Interpolation technique to investigate bifurcations of homoclinic tangency for 2-dimensional diffeomorphisms and, in particular, Newhouse phenomenon of infinitely many coexisting sinks. Homoclinic tangency has proved to be the most interesting feature of dynamics in dimension 2. The second is investigation of instabilities of generic of Hamiltonian systems, primarily using Mather theory.Enormous number of systems in the nature and technological processes are described by ordinary differential equations. Therefore, it is extremely important to understand long time behavior and stability of trajectories of in some sense generic ordinary differential equations. The first part of proposed project is an attempt to contribute to understanding of complicated behavior of chaotic low dimensional systems. Motion of plans, comets, and celestial dynamics in general are described by Hamiltonian equations. The second part of the project is devoted to investigation of such dynamics using primarily variational methods developed by many people and J. Mather in particular.
PI:Vadim Kaloshin,CAL TechDMS-0300229拟议项目包括两个主要部分。第一部分是研究紧致流形上离散动力系统(同构)的通有性质。利用Newton插值方法研究了二维单同态的同宿切分支,特别是无穷多个汇共存的纽豪斯现象。同宿相切已被证明是二维动力学中最有趣的特征。第二部分是研究一般哈密顿系统的不稳定性,主要是利用Mather理论,自然界和工艺过程中大量的系统都是用常微分方程来描述的。因此,了解一般常微分方程的长时间行为和轨迹的稳定性是非常重要的。第一部分的建议项目是试图有助于理解混沌低维系统的复杂行为。行星、彗星和天体动力学的运动一般都用哈密顿方程来描述。该项目的第二部分是专门调查这种动态使用主要是变分方法开发的许多人和J.马瑟特别。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Vadim Kaloshin其他文献
WITH WHITE NOISE POTENTIAL ON COMPACT SURFACES
紧凑表面上可能存在白噪声
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
A. N. M. Ouzard;I. M. Z. Achhuber;Vadim Kaloshin;A. Mazzucato;Richard B. Melrose Massachussets;Frank Merle;Werner Müller;Igor Rodnianski;Terence Tao;Michael E. Taylor;Dan Virgil;J. Wright - 通讯作者:
J. Wright
Erratum to: On Some Invariants of Birkhoff Billiards Under Conjugacy
- DOI:
10.1134/s1560354722060107 - 发表时间:
2022-11-01 - 期刊:
- 影响因子:0.800
- 作者:
Comlan E. Koudjinan;Vadim Kaloshin - 通讯作者:
Vadim Kaloshin
Conservative homoclinic bifurcations and some applications
- DOI:
10.1134/s0081543809040063 - 发表时间:
2010-02-03 - 期刊:
- 影响因子:0.400
- 作者:
Anton Gorodetski;Vadim Kaloshin - 通讯作者:
Vadim Kaloshin
OF RADIATION FIELDS OF FREE WAVES
自由波的辐射场
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
I. Liangl;R. U. S. Hen;EI Lijuanw;Vadim Kaloshin;A. Mazzucato;Richard B. Melrose Massachussets;Frank Merle;Werner Müller;Igor Rodnianski;Terence Tao;Michael E. Taylor;Dan Virgil;J. Wright - 通讯作者:
J. Wright
On Some Invariants of Birkhoff Billiards Under Conjugacy
- DOI:
10.1134/s1560354722050021 - 发表时间:
2022-10-03 - 期刊:
- 影响因子:0.800
- 作者:
Comlan E. Koudjinan;Vadim Kaloshin - 通讯作者:
Vadim Kaloshin
Vadim Kaloshin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Vadim Kaloshin', 18)}}的其他基金
The Birkhoff Conjecture, Spectral Rigidity for Convex Reflecting Particle Systems, and Stochastic Arnold Diffusion
伯克霍夫猜想、凸反射粒子系统的光谱刚性和随机阿诺德扩散
- 批准号:
1702278 - 财政年份:2017
- 资助金额:
$ 13.43万 - 项目类别:
Continuing Grant
Summer School in Dynamical Systems at Maryland
马里兰州动力系统暑期学校
- 批准号:
1402759 - 财政年份:2014
- 资助金额:
$ 13.43万 - 项目类别:
Standard Grant
Arnol'd diffusion, Growth of Sobolev norms, Spectral rigidity for convex billiards
Arnold 扩散、Sobolev 范数的增长、凸台球的谱刚性
- 批准号:
1402164 - 财政年份:2014
- 资助金额:
$ 13.43万 - 项目类别:
Continuing Grant
A conference ``Recent Progress in Lagrangian and Hamiltonian dynamics''
“拉格朗日和哈密顿动力学的最新进展”会议
- 批准号:
1223714 - 财政年份:2012
- 资助金额:
$ 13.43万 - 项目类别:
Standard Grant
Arnold Diffusion, Quasi-ergodic Hypothesis, Instabilities for the Planar 3 Body Problem, and Central Configurations
阿诺德扩散、拟遍历假设、平面三体问题的不稳定性和中心配置
- 批准号:
1101510 - 财政年份:2011
- 资助金额:
$ 13.43万 - 项目类别:
Continuing Grant
Arnold Diffusion, Quasi-ergodic Hypothesis, Instabilities for the Planar 3 Body Problem, and Central Configurations
阿诺德扩散、拟遍历假设、平面三体问题的不稳定性和中心配置
- 批准号:
1157830 - 财政年份:2011
- 资助金额:
$ 13.43万 - 项目类别:
Continuing Grant
A semester on Celestial mechanics and Hamiltonian systems
天体力学和哈密顿系统一个学期
- 批准号:
1001892 - 财政年份:2010
- 资助金额:
$ 13.43万 - 项目类别:
Standard Grant
Nonlocal instabilities for the planar 3-body problem
平面三体问题的非局部不稳定性
- 批准号:
0701271 - 财政年份:2007
- 资助金额:
$ 13.43万 - 项目类别:
Continuing Grant
相似海外基金
Ergodic Properties of Smooth Systems on Manifolds
流形上光滑系统的遍历性质
- 批准号:
2247572 - 财政年份:2023
- 资助金额:
$ 13.43万 - 项目类别:
Standard Grant
Collaborative Research: Construction and Properties of Sobolev Spaces of Differential Forms on Smooth and Lipschitz Manifolds with Applications to FEEC
合作研究:光滑流形和 Lipschitz 流形上微分形式 Sobolev 空间的构造和性质及其在 FEEC 中的应用
- 批准号:
2309779 - 财政年份:2023
- 资助金额:
$ 13.43万 - 项目类别:
Standard Grant
Collaborative Research: Construction and Properties of Sobolev Spaces of Differential Forms on Smooth and Lipschitz Manifolds with Applications to FEEC
合作研究:光滑流形和 Lipschitz 流形上微分形式 Sobolev 空间的构造和性质及其在 FEEC 中的应用
- 批准号:
2309780 - 财政年份:2023
- 资助金额:
$ 13.43万 - 项目类别:
Standard Grant
Rigid Structures and Statistical Properties of Smooth Systems
光滑系统的刚性结构和统计特性
- 批准号:
2154796 - 财政年份:2022
- 资助金额:
$ 13.43万 - 项目类别:
Standard Grant
Topics in Smooth Ergodic Theory: Stochastic Properties, Thermodynamic Formalism, Coexistence
平滑遍历理论主题:随机性质、热力学形式主义、共存
- 批准号:
2153053 - 财政年份:2022
- 资助金额:
$ 13.43万 - 项目类别:
Standard Grant
Ergodic Properties of Smooth Systems on Manifolds
流形上光滑系统的遍历性质
- 批准号:
1956310 - 财政年份:2020
- 资助金额:
$ 13.43万 - 项目类别:
Continuing Grant
Properties and function of TRPC proteins in vascular smooth muscle using transgenic mice
使用转基因小鼠研究血管平滑肌中 TRPC 蛋白的特性和功能
- 批准号:
BB/J007226/1 - 财政年份:2012
- 资助金额:
$ 13.43万 - 项目类别:
Research Grant
Analysis of physical properties of actin filaments during differentiation of smooth muscle cells
平滑肌细胞分化过程中肌动蛋白丝的物理特性分析
- 批准号:
24700454 - 财政年份:2012
- 资助金额:
$ 13.43万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Mechanical Properties Of Human Airway Smooth Muscle In Vitro And In Vivo: Normal Structure And Function And Abnormalities In Asthma
人体气道平滑肌的体外和体内机械特性:正常结构和功能以及哮喘中的异常
- 批准号:
189556 - 财政年份:2009
- 资助金额:
$ 13.43万 - 项目类别:
Operating Grants
Simulations of Agglomerate Collisions with Smooth Particle Hydrodynamics - Realistic Material Properties and Sticking, Bouncing and Fragmentation Statistics
使用光滑粒子流体动力学模拟附聚物碰撞 - 真实的材料特性以及粘着、弹跳和破碎统计
- 批准号:
35040788 - 财政年份:2006
- 资助金额:
$ 13.43万 - 项目类别:
Research Units