Sharp Estimates in Harmonic Analysis via Wavelets, Paraproducts and Bellman Functions
通过小波、副积和贝尔曼函数进行谐波分析的精确估计
基本信息
- 批准号:0701304
- 负责人:
- 金额:$ 11.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-06-01 至 2011-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The content of this proposal concerns a broad array of questions on singular integral operators, a central area of interest in harmonic analysis. The operator which distinguishes positive and negative frequencies of a function is the prototype of a singular integral operator. Good estimates for it in a variety of spaces and the tools developed in the process enjoy applications to many parts of modern harmonic analysis that have experienced rapid growth and widespread recognition in recent years. The investigator is going to tackle the famous problem concerning sharp bounds for the Beurling operator in Lebesgue spaces as well as dimension-free bounds for its multidimensional analog on forms. A broad array of weighted questions will be considered as well, both in the classical setting of kernel oparators as well as in the non-kernel case. Finally, the PI conducts research in the area of harmonic analysis in product domains and its applications. This area has opened up a broad array of questions and has enjoyed significant growth in recent years. Only recently have harmonic analysis tools been brought to bear these difficult questions. The range of questions pursued by the investigator will require the development of new techniques in Harmonic Analysis.
这项建议的内容涉及一系列关于奇异积分算子的问题,这是调和分析中感兴趣的一个中心领域。区分函数正负频率的算子是奇异积分算子的原型。在各种空间对它的良好估计和在此过程中开发的工具在现代调和分析的许多部分都得到了应用,这些部分近年来经历了快速的增长和广泛的认可。这位研究者将解决著名的问题,即Beurling算子在勒贝格空间中的锐界,以及它在形式上的多维模拟的无量纲界。无论是在经典的内核运算符设置中,还是在非内核情况下,都将考虑一系列广泛的加权问题。最后,对PI在产品领域的谐波分析及其应用进行了研究。这一领域提出了一系列广泛的问题,并在最近几年取得了显著增长。直到最近,调和分析工具才被用来承担这些困难的问题。研究人员追求的问题范围将要求在谐波分析中开发新的技术。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
William Beckner其他文献
William Beckner的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('William Beckner', 18)}}的其他基金
Homogeneous dynamics with applications to number theory
齐次动力学及其在数论中的应用
- 批准号:
0700128 - 财政年份:2007
- 资助金额:
$ 11.9万 - 项目类别:
Standard Grant
Geometric Inequalities in Fourier Analysis
傅里叶分析中的几何不等式
- 批准号:
9986154 - 财政年份:2000
- 资助金额:
$ 11.9万 - 项目类别:
Continuing Grant
Harmonic Analysis and PDE Mini-Conference
调和分析与偏微分方程小型会议
- 批准号:
9986086 - 财政年份:1999
- 资助金额:
$ 11.9万 - 项目类别:
Standard Grant
Zeta Functions and Sharp Fractional Integral Inequaities
Zeta 函数和锐分数积分不等式
- 批准号:
9622891 - 财政年份:1996
- 资助金额:
$ 11.9万 - 项目类别:
Standard Grant
Mathematical Sciences: Geometric Inequalities in Fourier Analysis
数学科学:傅立叶分析中的几何不等式
- 批准号:
9221551 - 财政年份:1993
- 资助金额:
$ 11.9万 - 项目类别:
Continuing Grant
Mathematical Sciences: Geometric Inequalities in Fourier Analysis
数学科学:傅里叶分析中的几何不等式
- 批准号:
8801847 - 财政年份:1988
- 资助金额:
$ 11.9万 - 项目类别:
Standard Grant
Fourier Analysis on Euclidean Spaces
欧几里得空间的傅里叶分析
- 批准号:
7906088 - 财政年份:1979
- 资助金额:
$ 11.9万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: Non-homogeneous Harmonic Analysis, Spectral Theory, and Weighted Norm Estimates
合作研究:非齐次谐波分析、谱理论和加权范数估计
- 批准号:
2154335 - 财政年份:2022
- 资助金额:
$ 11.9万 - 项目类别:
Standard Grant
Collaborative Research: Non-homogeneous Harmonic Analysis, Spectral Theory, and Weighted Norm Estimates
合作研究:非齐次谐波分析、谱理论和加权范数估计
- 批准号:
2154321 - 财政年份:2022
- 资助金额:
$ 11.9万 - 项目类别:
Standard Grant
Collaborative Research: Non-homogeneous Harmonic Analysis, Spectral Theory, and Weighted Norm Estimates
合作研究:非齐次谐波分析、谱理论和加权范数估计
- 批准号:
2154402 - 财政年份:2022
- 资助金额:
$ 11.9万 - 项目类别:
Standard Grant
Collaborative research: Weighted Estimates with Matrix Weights and Non-Homogeneous Harmonic Analysis
合作研究:矩阵权重加权估计和非齐次谐波分析
- 批准号:
1856719 - 财政年份:2019
- 资助金额:
$ 11.9万 - 项目类别:
Continuing Grant
Collaborative research: Weighted Estimates with Matrix Weights and Non-Homogeneous Harmonic Analysis
合作研究:矩阵权重加权估计和非齐次谐波分析
- 批准号:
1900268 - 财政年份:2019
- 资助金额:
$ 11.9万 - 项目类别:
Continuing Grant
Collaborative research: Weighted Estimates with Matrix Weights and Non-Homogeneous Harmonic Analysis
合作研究:矩阵权重加权估计和非齐次谐波分析
- 批准号:
1900008 - 财政年份:2019
- 资助金额:
$ 11.9万 - 项目类别:
Continuing Grant
Multiparameter Harmonic Analysis: Weighted Estimates for Singular Integrals
多参数谐波分析:奇异积分的加权估计
- 批准号:
DP160100153 - 财政年份:2016
- 资助金额:
$ 11.9万 - 项目类别:
Discovery Projects
Monotonicity estimates and local regularity and singularity for the p-harmonic flows
p 谐波流的单调性估计以及局部规律性和奇异性
- 批准号:
15K04962 - 财政年份:2015
- 资助金额:
$ 11.9万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Weighted, non-local, and product-type Bellman estimates in Harmonic Analysis
谐波分析中的加权、非局部和产品类型 Bellman 估计
- 批准号:
1001567 - 财政年份:2010
- 资助金额:
$ 11.9万 - 项目类别:
Standard Grant
Collaborative research: Non-homogeneous harmonic analysis, two weight estimates and spectral problems.
合作研究:非齐次谐波分析、二次权重估计和谱问题。
- 批准号:
0501065 - 财政年份:2005
- 资助金额:
$ 11.9万 - 项目类别:
Continuing Grant