Collaborative Research: Non-homogeneous Harmonic Analysis, Spectral Theory, and Weighted Norm Estimates
合作研究:非齐次谐波分析、谱理论和加权范数估计
基本信息
- 批准号:2154321
- 负责人:
- 金额:$ 43.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-01 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Singular integrals are mathematical objects that feature heavily in the study of partial differential equations, with applications ranging from physics to engineering to quantum computing. The mathematical theory of singular integrals has traditionally been formulated in smooth geometric settings. However, demand for an understanding of singular integrals in rougher settings has grown recently with a more refined understanding of mathematical models for physical phenomena in irregular or non-smooth environments. Emerging applications of singular integrals in quantum computing further buttress the need for such extensions of the classical theory. Notably, the relationship between singular integrals and the geometry of sets and measures facilitates a new understanding of dimension reduction for high-dimensional point sets, that is, mechanisms to detect whether large collections of points in a high-dimensional space in fact lie on a smooth lower-dimensional manifold. Results of this nature are important for data science applications, and the project has the potential to bring the toolkit of singular integral theory to bear on this important application domain. By coupling pure harmonic analysis methods with tools from combinatorics and probability, and through its noticeable interface with questions of relevance in data science, the project will also provide opportunities for the training of junior mathematicians, including graduate students.This project considers a variety of questions in the study of singular integrals in non-smooth or rough settings, using both existing and newly developed tools. The principal investigators have been at the forefront of the past development of such a theory, and the current project will crystallize new applications to other areas of geometry and analysis. Questions under consideration in this project include: (a) a sharp characterization of bounded singular integrals with matrix weight, which is important in the regularity theory of vector stationary stochastic processes, (b) a characterization of weighted boundedness for para-product singular operators on graphs with cycles (multi-trees, Hamming cubes, etc.), and (c) the David-Semmes regularity problem in codimensions larger than one. The latter topic ties the project to questions in geometric measure theory and to the study of dimension reduction, with concomitant implications for the geometry of large data sets.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
奇异积分是偏微分方程研究中的重要数学对象,其应用范围从物理到工程到量子计算。奇异积分的数学理论传统上是在光滑的几何条件下建立的。然而,最近随着对不规则或非光滑环境中物理现象的数学模型的更精细理解,对粗糙环境中奇异积分的理解的需求有所增长。奇异积分在量子计算中的新兴应用进一步支持了对经典理论的这种扩展的需求。值得注意的是,奇异积分与集合和测度的几何之间的关系促进了对高维点集降维的新理解,也就是说,检测高维空间中的大量点是否实际上位于光滑的低维流形上的机制。这种性质的结果对于数据科学应用非常重要,该项目有可能将奇异积分理论工具包带到这个重要的应用领域。通过将纯调和分析方法与组合学和概率学的工具相结合,并通过其与数据科学相关问题的明显接口,该项目还将为初级数学家(包括研究生)提供培训机会。该项目考虑使用现有和新开发的工具研究非光滑或粗糙设置中的奇异积分的各种问题。主要研究人员一直处于这种理论过去发展的最前沿,目前的项目将使几何和分析的其他领域的新应用具体化。在这个项目中考虑的问题包括:(a)具有矩阵权的有界奇异积分的精确刻画,这在向量平稳随机过程的正则性理论中是重要的,(B)具有圈的图(多树,Hamming立方体等)上的仿积奇异算子的加权有界性的刻画,(c)余维大于1的David-Semmes正则性问题。后一个主题将该项目与几何测量理论和降维研究中的问题联系起来,并伴随着对大型数据集几何的影响。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The matrix-weighted dyadic convex body maximal operator is not bounded
矩阵加权二进凸体极大算子无界
- DOI:10.1016/j.aim.2022.108711
- 发表时间:2022
- 期刊:
- 影响因子:1.7
- 作者:Nazarov, F.;Petermichl, S.;Škreb, K.A.;Treil, S.
- 通讯作者:Treil, S.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Serguei Treil其他文献
Serguei Treil的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Serguei Treil', 18)}}的其他基金
Collaborative research: Weighted Estimates with Matrix Weights and Non-Homogeneous Harmonic Analysis
合作研究:矩阵权重加权估计和非齐次谐波分析
- 批准号:
1856719 - 财政年份:2019
- 资助金额:
$ 43.25万 - 项目类别:
Continuing Grant
Collaborative Research: Calderon-Zygmund Operators in Highly Irregular Environments, and Applications
合作研究:高度不规则环境中的 Calderon-Zygmund 算子及其应用
- 批准号:
1600139 - 财政年份:2016
- 资助金额:
$ 43.25万 - 项目类别:
Continuing Grant
Collaborative research: Universality phenomena and some hard problems of non-homogeneous Harmonic Analysis
合作研究:非齐次调和分析的普遍性现象和一些难题
- 批准号:
1301579 - 财政年份:2013
- 资助金额:
$ 43.25万 - 项目类别:
Continuing Grant
Collaborative Research: Bellman function, Harmonic Analysis and Operator Theory
合作研究:贝尔曼函数、调和分析和算子理论
- 批准号:
0800876 - 财政年份:2008
- 资助金额:
$ 43.25万 - 项目类别:
Continuing Grant
Collaborative research: Non-homogeneous harmonic analysis, two weight estimates and spectral problems.
合作研究:非齐次谐波分析、二次权重估计和谱问题。
- 批准号:
0501065 - 财政年份:2005
- 资助金额:
$ 43.25万 - 项目类别:
Continuing Grant
Collaborative Research: Multidimensional and Non-Homogeneous Harmonic Analysis: Bellman Functions, Perturbations of Normal Operators and Two Weight Estimates of Singular Integrals
合作研究:多维非齐次调和分析:贝尔曼函数、正规算子的扰动和奇异积分的两种权重估计
- 批准号:
0200584 - 财政年份:2002
- 资助金额:
$ 43.25万 - 项目类别:
Continuing Grant
An Operator Approach to Problems in Analysis and Probability: Matrix Muckenhoupt Weights, Hankel and Toeplitz Operators, Singular Integrals and the Angle between Past and Future
分析和概率问题的算子方法:矩阵 Muckenhoupt 权重、Hankel 和 Toeplitz 算子、奇异积分以及过去与未来之间的角度
- 批准号:
9622936 - 财政年份:1996
- 资助金额:
$ 43.25万 - 项目类别:
Continuing Grant
Mathematical Sciences: Hankel Operators and Their Applications
数学科学:汉克尔算子及其应用
- 批准号:
9304011 - 财政年份:1993
- 资助金额:
$ 43.25万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Non-Linearity and Feedbacks in the Atmospheric Circulation Response to Increased Carbon Dioxide (CO2)
合作研究:大气环流对二氧化碳 (CO2) 增加的响应的非线性和反馈
- 批准号:
2335762 - 财政年份:2024
- 资助金额:
$ 43.25万 - 项目类别:
Standard Grant
Collaborative Research: Non-Linearity and Feedbacks in the Atmospheric Circulation Response to Increased Carbon Dioxide (CO2)
合作研究:大气环流对二氧化碳 (CO2) 增加的响应的非线性和反馈
- 批准号:
2335761 - 财政年份:2024
- 资助金额:
$ 43.25万 - 项目类别:
Standard Grant
Collaborative Research: Catholyte Molecular Design For Non-aqueous Mg-organic Hybrid Redox Flow Batteries
合作研究:非水镁有机混合氧化还原液流电池的阴极电解液分子设计
- 批准号:
2419938 - 财政年份:2024
- 资助金额:
$ 43.25万 - 项目类别:
Standard Grant
Collaborative Research: CCF Core: Small: User-transparent Data Management for Persistence and Crash-consistency in Non-volatile Memories
协作研究:CCF 核心:小型:用户透明的数据管理,以实现非易失性存储器中的持久性和崩溃一致性
- 批准号:
2313146 - 财政年份:2023
- 资助金额:
$ 43.25万 - 项目类别:
Standard Grant
Collaborative Research: Advances in the Theory and Practice of Non-Euclidean Statistics
合作研究:非欧几里得统计理论与实践的进展
- 批准号:
2311058 - 财政年份:2023
- 资助金额:
$ 43.25万 - 项目类别:
Continuing Grant
Collaborative Research: Non-Parametric Inference of Temporal Data
合作研究:时态数据的非参数推理
- 批准号:
2311249 - 财政年份:2023
- 资助金额:
$ 43.25万 - 项目类别:
Standard Grant
Collaborative Research: Hidden Dimensions of Diversity in Woodland Salamanders: Investigating Ecophysiological Evolution in a Classic Non-Adaptive Radiation
合作研究:林地蝾螈多样性的隐藏维度:研究经典非适应性辐射中的生态生理进化
- 批准号:
2403865 - 财政年份:2023
- 资助金额:
$ 43.25万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Small: Detecting and Localizing Non-Functional Vulnerabilities in Machine Learning Libraries
协作研究:SaTC:核心:小型:检测和本地化机器学习库中的非功能性漏洞
- 批准号:
2230060 - 财政年份:2023
- 资助金额:
$ 43.25万 - 项目类别:
Standard Grant
Collaborative Research: RESEARCH-PGR: Genome-wide quest for non-host resistance mechanisms in plants
合作研究:RESEARCH-PGR:全基因组探索植物非宿主抗性机制
- 批准号:
2224203 - 财政年份:2023
- 资助金额:
$ 43.25万 - 项目类别:
Standard Grant
Collaborative Research: New Phase Diagrams for Predictive Solvothermal Synthesis in Non-Aqueous Solvents
合作研究:非水溶剂中预测溶剂热合成的新相图
- 批准号:
2240281 - 财政年份:2023
- 资助金额:
$ 43.25万 - 项目类别:
Continuing Grant