Hierarchical approximations to optimal control
最优控制的分层近似
基本信息
- 批准号:0702221
- 负责人:
- 金额:$ 25.57万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-07-01 至 2010-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Proposal Number: 0702221Proposal Title: Hierarchical approximations to optimal controlPI Name: Todorov, EmanuelPI Institution: University of California-San Diego The objective of this research is develop new algorithms forapproximately-optimal control of complex dynamical systems. The approachcombines inspiration from neuroscience with mathematical advances in controltheory. The algorithms have a hierarchical structure reminiscent of the waythe brain generates complex behavior. The lower level of the hierarchyaugments the body and makes it easier to control. The higher level monitorsprogress and steers the system towards achievement of the common task. Inthis way the complexities due to the body are separated from those due tothe task.Intellectual meritThe project includes two complementary classes of algorithms. The firstclass represents a significant advance in the theory of stochastic optimalcontrol. A general family of problems are identified where the fundamentalequations characterizing the optimal solution turn out to be linear, eventhough the controlled system is nonlinear. The second class of algorithmsrepresents a practical framework for attacking high-dimensional nonlinearproblems, particularly those that arise in biomechanics.Broader impactsThe proposed theoretical developments represent foundational work which islikely to have a lasting impact. The proposed numerical algorithms have thepotential to extend the range of practically-solvable optimal controlproblems. Optimal control is of interest in many fields of science andengineering, including the recovery of motor function via brain-machineinterfaces. Educational activities include mentoring of the graduatestudents funded by this proposal, as well as design and teaching of bothgraduate and undergraduate classes at the interface of Neuroscience andEngineering.
提案号:0702221提案标题:最优控制的层次逼近名称:Todorov, EmanuelPI机构:加州大学圣地亚哥分校本研究的目标是开发复杂动态系统的近似最优控制的新算法。该方法将神经科学的灵感与控制理论的数学进步相结合。这些算法有一个层次结构,让人想起大脑产生复杂行为的方式。层次结构的较低层次增强了主体,使其更易于控制。高层监控进程,并引导系统实现共同任务。这样,身体的复杂性与任务的复杂性就分离了。该项目包括两类互补的算法。第一类代表了随机最优控制理论的重大进展。在一类问题中,尽管被控系统是非线性的,但表征最优解的基本方程却是线性的。第二类算法代表了解决高维非线性问题的实用框架,特别是那些出现在生物力学中的问题。更广泛的影响提出的理论发展代表了基础工作,不太可能产生持久的影响。所提出的数值算法有可能扩展实际可解的最优控制问题的范围。最优控制在许多科学和工程领域都引起了人们的兴趣,包括通过脑机接口恢复运动功能。教育活动包括指导由该提案资助的研究生,以及设计和教学神经科学和工程接口的研究生和本科生课程。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Emanuel Todorov其他文献
Development of clinician-friendly software for musculoskeletal modeling and control
开发临床医生友好的肌肉骨骼建模和控制软件
- DOI:
- 发表时间:
2004 - 期刊:
- 影响因子:0
- 作者:
R. Davoodi;C. Urata;Emanuel Todorov;Gerald E. Loeb - 通讯作者:
Gerald E. Loeb
Optimality principles in sensorimotor control
感觉运动控制中的最优性原则
- DOI:
10.1038/nn1309 - 发表时间:
2004-08-26 - 期刊:
- 影响因子:20.000
- 作者:
Emanuel Todorov - 通讯作者:
Emanuel Todorov
Optimal Control Theory
- DOI:
10.7551/mitpress/1535.003.0018 - 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
Emanuel Todorov - 通讯作者:
Emanuel Todorov
Emanuel Todorov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Emanuel Todorov', 18)}}的其他基金
NRI: Small: Dynamic Locomotion: From Humans to Robots via Optimal Control
NRI:小:动态运动:通过最优控制从人类到机器人
- 批准号:
1317702 - 财政年份:2013
- 资助金额:
$ 25.57万 - 项目类别:
Standard Grant
Dynamic intelligence through online optimization
通过在线优化实现动态智能
- 批准号:
1202375 - 财政年份:2012
- 资助金额:
$ 25.57万 - 项目类别:
Standard Grant
Hierarchical approximations to optimal control
最优控制的分层近似
- 批准号:
1002136 - 财政年份:2009
- 资助金额:
$ 25.57万 - 项目类别:
Standard Grant
Optimal Control Problems with Linear Bellman Equations
线性贝尔曼方程的最优控制问题
- 批准号:
1007736 - 财政年份:2009
- 资助金额:
$ 25.57万 - 项目类别:
Standard Grant
RAPD: Development of Domestic Virtual Robotic Environment
RAPD:国产虚拟机器人环境开发
- 批准号:
0930927 - 财政年份:2009
- 资助金额:
$ 25.57万 - 项目类别:
Standard Grant
Optimal Control Problems with Linear Bellman Equations
线性贝尔曼方程的最优控制问题
- 批准号:
0700880 - 财政年份:2007
- 资助金额:
$ 25.57万 - 项目类别:
Standard Grant
Hierarchical optimal control of complex dynamics - new algorithms and models of sensorimotor function
复杂动力学的层次优化控制——感觉运动功能的新算法和模型
- 批准号:
0524761 - 财政年份:2005
- 资助金额:
$ 25.57万 - 项目类别:
Standard Grant
相似海外基金
Goldilocks convergence tools and best practices for numerical approximations in Density Functional Theory calculations
密度泛函理论计算中数值近似的金发姑娘收敛工具和最佳实践
- 批准号:
EP/Z530657/1 - 财政年份:2024
- 资助金额:
$ 25.57万 - 项目类别:
Research Grant
CAREER: Statistical Inference in High Dimensions using Variational Approximations
职业:使用变分近似进行高维统计推断
- 批准号:
2239234 - 财政年份:2023
- 资助金额:
$ 25.57万 - 项目类别:
Continuing Grant
CAREER: Complexity of quantum many-body systems: learnability, approximations, and entanglement
职业:量子多体系统的复杂性:可学习性、近似和纠缠
- 批准号:
2238836 - 财政年份:2023
- 资助金额:
$ 25.57万 - 项目类别:
Continuing Grant
Density Functional Theory of Molecular Fragments: Strong Electron Correlation Beyond Density Functional Approximations
分子片段的密度泛函理论:超越密度泛函近似的强电子相关性
- 批准号:
2306011 - 财政年份:2023
- 资助金额:
$ 25.57万 - 项目类别:
Standard Grant
Physics-Informed Structure-Preserving Numerical Approximations of Thermodynamically Consistent Models for Non-equilibrium Phenomena
非平衡现象热力学一致模型的物理信息保结构数值近似
- 批准号:
2405605 - 财政年份:2023
- 资助金额:
$ 25.57万 - 项目类别:
Standard Grant
Matrix Approximations, Stability of Groups and Cohomology Invariants
矩阵近似、群稳定性和上同调不变量
- 批准号:
2247334 - 财政年份:2023
- 资助金额:
$ 25.57万 - 项目类别:
Standard Grant
Gradient approximations and Hessian approximations: theory, algorithms and applications
梯度近似和 Hessian 近似:理论、算法和应用
- 批准号:
559838-2021 - 财政年份:2022
- 资助金额:
$ 25.57万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
New horizons in operator algebras: finite-dimensional approximations and quantized function theory
算子代数的新视野:有限维近似和量化函数理论
- 批准号:
RGPIN-2022-03600 - 财政年份:2022
- 资助金额:
$ 25.57万 - 项目类别:
Discovery Grants Program - Individual
Dynamics and Non-Dissipative Approximations of Nonlinear Nonlocal Fluid Equations
非线性非局部流体方程的动力学和非耗散近似
- 批准号:
2204614 - 财政年份:2022
- 资助金额:
$ 25.57万 - 项目类别:
Standard Grant
Randomization/virtual-re-sampling methods, Changepoint detection, Short and long memory processes, Self-normalized partial sums processes, Planar random walks, Strong and weak approximations
随机化/虚拟重采样方法、变化点检测、短记忆过程和长记忆过程、自归一化部分和过程、平面随机游走、强近似和弱近似
- 批准号:
RGPIN-2016-06167 - 财政年份:2022
- 资助金额:
$ 25.57万 - 项目类别:
Discovery Grants Program - Individual