Unconventional Phases and Phase Transitions in Strongly Correlated Fermionic Systems

强相关费米子系统中的非常规相和相变

基本信息

  • 批准号:
    0704133
  • 负责人:
  • 金额:
    $ 25.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-12-15 至 2011-11-30
  • 项目状态:
    已结题

项目摘要

TECHNICAL SUMMARY:This award supports integrated research, education and outreach activities in theoretical condensed matter physics. The research investigates unconventional phases and phase transitions in strongly correlated fermionic systems. Research is stimulated by the observation that these strong interactions can drive fermionic systems into unconventional phases, that cannot be described by standard paradigms like the Fermi liquid theory. This research undertakes developing pertinent theoretical models and understanding the properties of such unconventional phases, as well as phase transitions involving them, is the central concern of this work.The research project undertakes specific goals en route to developing the model and theory of such phases and phase transitions. They include: edge states of fractional quantum Hall phase(s) that support quasiparticles with non-Abelian statistics; effects of disorder and finite system size on the properties topological phases in fractional quantum Hall liquids, especially those related to topological quantum computation; ferromagnetic phase and phase transition in one-dimensional metals; unconventional fermionic superfluid phases formed by pairing different species of fermions with density imbalance, and phase transitions among them. All of these phases and phase transitions are currently being studied very actively by both experimentalists and theorists. Various analytical and numerical methods will be used in the theoretical studies proposed here. Specific methods include bosonization, renormalization group, particle-vortex duality transformation, exact diagonalization, and numerical implementation of mean-field theories. Emphasis is on calculating physical quantities that can be measured experimentally, and finding experimental methods that can reveal the exotic properties of such unconventional phases most directly.The project employs student researchers who are involved in graduate study in physics. The research contributes to their education in learning the theoretical techniques and understanding the properties of the materials and experience in the use of computational modeling to connect theory to prediction of materials properties. In addition, for the graduate students involved, the research forms the basis for dissertation work leading to the Ph.D.NON-TECHNICAL SUMMARY:This award supports integrated research, education and outreach activities in theoretical condensed matter physics. The research investigates unusual ways in which electrons in certain materials can organized themselves. This organization is more subtle than simple spatial organization and half dozen examples of types of orderings involving pair of electrons and there energy states as well as modifications that depend upon the directions in which the electrons spin. Some of these states are well know, including the original BCS state responsible for explaining superconductivity. Other states are merely conjectured. It is the purpose of the research to investigate and theoretically explain such unusual orderings of electrons in the variety of systems where this has been detected or where it might be detected. This research undertakes developing pertinent theoretical models and understanding the properties of such unconventional phases, as well as phase transitions involving them, is the central concern of this work. Emphasis is on calculating physical quantities that can be measured experimentally, and finding experimental methods that can reveal the exotic properties of such unconventional orderings most directly.The project employs student researchers who are involved in graduate study in physics. The research contributes to their education in learning the theoretical techniques and understanding the properties of the materials and experience in the use of computational modeling to connect theory to prediction of materials properties. In addition, for the graduate students involved, the research forms the basis for dissertation work leading to the Ph.D.
技术摘要:该奖项支持理论凝聚态物理领域的综合研究、教育和推广活动。该研究研究了强相关费米子系统中的非常规相和相变。这些强相互作用可以驱动费米子系统进入非常规相,而这种相无法用费米液体理论等标准范式来描述,这一观察结果刺激了研究。这项研究致力于开发相关的理论模型,并了解此类非常规相的性质以及涉及它们的相变,是这项工作的核心关注点。该研究项目在开发此类相和相变的模型和理论的过程中承担了特定的目标。它们包括: 支持具有非阿贝尔统计的准粒子的分数量子霍尔相的边缘态;无序和有限系统尺寸对分数量子霍尔液体拓扑相特性的影响,特别是与拓扑量子计算相关的影响;一维金属中的铁磁相和相变;通过密度不平衡的不同种类的费米子配对形成的非常规费米子超流体相,以及它们之间的相变。目前,实验学家和理论学家正在非常积极地研究所有这些相和相变。这里提出的理论研究将使用各种分析和数值方法。具体方法包括玻色子化、重正化群、粒子涡对偶变换、精确对角化以及平均场理论的数值实现。重点是计算可以通过实验测量的物理量,并找到可以最直接地揭示此类非常规相的奇异特性的实验方法。该项目雇用了参与物理学研究生学习的学生研究人员。 该研究有助于他们学习理论技术和理解材料特性以及使用计算模型将理论与材料特性预测联系起来的经验。此外,对于参与的研究生来说,该研究构成了获得博士学位的论文工作的基础。非技术摘要:该奖项支持理论凝聚态物理领域的综合研究、教育和推广活动。该研究调查了某些材料中电子自我组织的不寻常方式。这种组织比简单的空间组织更微妙,并且有六个涉及电子对和能量状态的排序类型示例以及取决于电子旋转方向的修改。其中一些状态是众所周知的,包括负责解释超导性的原始 BCS 状态。其他状态只是推测。这项研究的目的是调查并从理论上解释在已检测到或可能检测到电子的各种系统中这种不寻常的电子排序。这项研究的重点是开发相关的理论模型并了解此类非常规相的性质以及涉及它们的相变。重点是计算可以通过实验测量的物理量,并找到可以最直接地揭示这种非常规排序的奇异特性的实验方法。该项目雇用了参与物理学研究生学习的学生研究人员。 该研究有助于他们学习理论技术和理解材料特性以及使用计算模型将理论与材料特性预测联系起来的经验。此外,对于所涉及的研究生来说,该研究构成了获得博士学位的论文工作的基础。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kun Yang其他文献

The Structural Optimization of Dimple in Microchannel for Heat Transfer Enhancement
微通道强化传热凹坑的结构优化
  • DOI:
    10.1115/1.4047513
  • 发表时间:
    2020-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xiuping Chen;Jiabing Wang;Kun Yang
  • 通讯作者:
    Kun Yang
Robust H infinite Guaranteed Cost Control for Uncertain Switched Descriptor Delayed Systems with Nonlinear Disturbance
具有非线性扰动的不确定切换描述符延迟系统的鲁棒H无限保证成本控制
An illustration of the optimization of combined cooling heating and power systems using genetic algorithm
使用遗传算法优化冷热电联供系统的图示
Long Noncoding RNAs Hepatocyte Nuclear Factor 4A Antisense RNA 1 and Hepatocyte Nuclear Factor 1A Antisense RNA 1 Are Involved in Ritonavir-Induced Cytotoxicity in Hepatoma Cells
长非编码RNA肝细胞核因子4A反义RNA 1和肝细胞核因子1A反义RNA 1参与利托那韦诱导的肝癌细胞细胞毒性
  • DOI:
    10.1124/dmd.121.000693
  • 发表时间:
    2021-12
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Xiaofei Wang;Yihang Yu;Pei Wang;Kun Yang;Yiting Wang;Liang Yan;Xiao-bo Zhong;Lirong Zhang
  • 通讯作者:
    Lirong Zhang
Enhancing corrosion resistance of magnesium alloys via combining green chicory extracts and metal cations as organic-inorganic composite inhibitor
绿菊苣提取物与金属阳离子组合作为有机-无机复合缓蚀剂提高镁合金的耐腐蚀性能
  • DOI:
    10.1016/j.corcom.2022.06.002
  • 发表时间:
    2023-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Pubo Li;Zexi Shao;Wei Fu;Wei Ma;Kun Yang;Hai Zhou;Mangmang Gao
  • 通讯作者:
    Mangmang Gao

Kun Yang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kun Yang', 18)}}的其他基金

Interface, Edge and Bulk of Complex States of Matter
复杂物态的界面、边缘和块体
  • 批准号:
    2315954
  • 财政年份:
    2023
  • 资助金额:
    $ 25.5万
  • 项目类别:
    Standard Grant
Exotic Phases and Their Interfaces in Correlated Many-Particle Systems
相关多粒子系统中的奇异相及其界面
  • 批准号:
    1932796
  • 财政年份:
    2019
  • 资助金额:
    $ 25.5万
  • 项目类别:
    Standard Grant
Transport, Entanglement and Topology in Correlated Many-Particle Systems
相关多粒子系统中的输运、纠缠和拓扑
  • 批准号:
    1442366
  • 财政年份:
    2015
  • 资助金额:
    $ 25.5万
  • 项目类别:
    Continuing Grant
Unconventional Phases and Phase Transitions in Electronic and Trapped Cold Atom Systems
电子和俘获冷原子系统中的非常规相和相变
  • 批准号:
    1004545
  • 财政年份:
    2010
  • 资助金额:
    $ 25.5万
  • 项目类别:
    Continuing Grant
PAL : Personal and Social Communication Services for Lifestyle Monitoring
PAL:用于生活方式监测的个人和社交通信服务
  • 批准号:
    TS/H000186/1
  • 财政年份:
    2009
  • 资助金额:
    $ 25.5万
  • 项目类别:
    Research Grant
Policy-based Model-driven Pervasive Service Creation and Adaptation (PANDA)
基于策略的模型驱动的普适服务创建和适应(PANDA)
  • 批准号:
    EP/D061881/1
  • 财政年份:
    2006
  • 资助金额:
    $ 25.5万
  • 项目类别:
    Research Grant
Role of Disorder in Strongly Correlated Low-Dimensional Systems
无序在强相关低维系统中的作用
  • 批准号:
    0225698
  • 财政年份:
    2002
  • 资助金额:
    $ 25.5万
  • 项目类别:
    Continuing Grant
Dynamics, Thermodynamics and Spin Transport in Random Quantum Spin Chains
随机量子自旋链中的动力学、热力学和自旋输运
  • 批准号:
    9971541
  • 财政年份:
    1999
  • 资助金额:
    $ 25.5万
  • 项目类别:
    Continuing Grant

相似国自然基金

Zintl Phases点缺陷结构与热电性能调控
  • 批准号:
    51771105
  • 批准年份:
    2017
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

Synthesising novel phases of carbon by shear-induced phase transformations
通过剪切诱导相变合成碳的新相
  • 批准号:
    DP230101407
  • 财政年份:
    2023
  • 资助金额:
    $ 25.5万
  • 项目类别:
    Discovery Projects
Investigation of magnetic field phase diagrams and magnetic field synthesis processes of binary alloy systems containing many types and multiple magnetic phases
多类型、多磁相二元合金体系磁场相图及磁场合成过程研究
  • 批准号:
    23H01714
  • 财政年份:
    2023
  • 资助金额:
    $ 25.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Creation of Defect Phase Diagrams for Ordered Laves Phases
创建有序 Laves 相的缺陷相图
  • 批准号:
    576837-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 25.5万
  • 项目类别:
    Alliance Grants
Active Matter Phases and Phase Transitions in a Model Social Bacterium
社会细菌模型中的活性物质相和相变
  • 批准号:
    2210346
  • 财政年份:
    2022
  • 资助金额:
    $ 25.5万
  • 项目类别:
    Continuing Grant
Deformation Mechanism of Nanostructured Dual Phase Steels Composed of Soft and Hard Phases ~ control of mechanical properties based on heterogeneity
软硬相组成的纳米结构双相钢的变形机制~基于异质性的力学性能控制
  • 批准号:
    20H00306
  • 财政年份:
    2020
  • 资助金额:
    $ 25.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Microscopic construction of strongly-correlated topological phases and the study on thier phase structures
强相关拓扑相的微观构建及三相结构研究
  • 批准号:
    18K03455
  • 财政年份:
    2018
  • 资助金额:
    $ 25.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study of pressure-temperature phase diagram of superconductivity competing with electronic nematic and magnetic ordered phases in iron-based superconductor
铁基超导体中与电子向列相和磁有序相竞争的超导压力-温度相图研究
  • 批准号:
    18K03516
  • 财政年份:
    2018
  • 资助金额:
    $ 25.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Molecular Studies of Phase Transitions in Soft Matter: The Lower Critical Solution Temperature Transition Études moléculaires de transitions de phases dans la matière molle: LCST
软物质相变的分子研究:较低临界溶液温度转变 - 研究材料相变的分子:LCST
  • 批准号:
    249997-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 25.5万
  • 项目类别:
    Discovery Grants Program - Individual
SBIR Phase I: Molecular Modeling as a Screening Tool to Separate Enantiomers of Chiral Compounds Using Polysaccharide-based Chiral Stationary Phases for Orphan Drugs
SBIR 第一阶段:分子模型作为筛选工具,使用基于多糖的手性固定相分离孤儿药手性化合物的对映体
  • 批准号:
    1621012
  • 财政年份:
    2016
  • 资助金额:
    $ 25.5万
  • 项目类别:
    Standard Grant
symmetry and phase transitions for a system with Floquet topological phases
具有 Floquet 拓扑相的系统的对称性和相变
  • 批准号:
    16K17760
  • 财政年份:
    2016
  • 资助金额:
    $ 25.5万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了