Unconventional Phases and Phase Transitions in Electronic and Trapped Cold Atom Systems
电子和俘获冷原子系统中的非常规相和相变
基本信息
- 批准号:1004545
- 负责人:
- 金额:$ 27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-10-01 至 2014-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
TECHNICAL SUMMARYThis award supports integrated research and education in theoretical condensed matter physics. The PI aims to investigate unconventional phases and phase transitions in strongly correlated electronic and cold atom systems. The research is motivated by the observation that strong interactions can drive these systems into unconventional phases, which cannot be described by standard paradigms like the Fermi liquid theory. The PI will undertake specific goals en route to developing models and theories of unconvetional phases and phase transitions. They include: Unusual bulk and edge properties of fractional quantum Hall phase(s) that support quasiparticles with non-Abelian statistics; cold atom systems that support various types of fractional quantum Hall phase(s) and undergo quantum phase transitions between them; exotic phases formed by mixtures of bosonic and fermionic atoms/molecules; and excitonic states formed by pairing particles and holes in semiconductors. All of these phases and phase transitions are currently being studied very actively by both experimentalists and theorists. Various analytical and numerical methods will be used in the theoretical studies proposed here. Specific methods include bosonization, renormalization group, particle-vortex duality transformation, exact diagonalization, and numerical implementation of mean-field theories. Emphasis is on calculating physical quantities that can be measured experimentally, and finding experimental methods that can reveal the exotic properties of such unconventional phases most directly.This project provides educational opportunities for graduate student and postdoctoral researchers to learn advanced theoretical techniques and computational methods. The PI will also be heavily involved in various services to the scientific community, including organizing national and international professional conferences.NONTECHNICAL SUMMARYThis award supports integrated research and education in theoretical condensed matter physics. The PI aims to investigate unusual ways in which electrons and atoms in certain materials can organize themselves. This organization is more subtle than simple spatial organization, such as the regular periodic array of atoms in a crystal. Some of these states are well known, including the original Bardeen, Cooper, and Schrieffer state for superconductivity, a state of matter that can conduct electricity without dissipation. Other states are predictions. The PI will investigate and theoretically explain such unconventional ordering of electrons and atoms in a variety of materials where it might be detected. This research involves developing pertinent theoretical models and understanding the properties of such unconventional phases, as well as phase transitions involving them, as its central goal. Emphasis is on calculating physical quantities that can be measured experimentally, and finding experimental methods that can reveal the exotic properties of unconventional order most directly.This project provides educational opportunities for graduate student and postdoctoral researchers to learn advanced theoretical techniques and computational methods. The PI will also be heavily involved in various services to the scientific community, including organizing national and international professional conferences.
技术总结该奖项支持理论凝聚态物理的综合研究和教育。PI的目标是研究强关联电子和冷原子系统中的非传统相和相变。这项研究的动机是观察到,强相互作用可以将这些系统推向非传统阶段,这不能用费米液体理论等标准范式来描述。PI将承担特定的目标,以开发非输送阶段和相变的模型和理论。它们包括:支持具有非阿贝尔统计的准粒子的分数量子霍尔相(S)的不同寻常的体积和边缘性质;支持各种类型的分数量子霍尔相(S)并在它们之间经历量子相变的冷原子系统;由玻色子和费米子原子/分子混合形成的奇异相;以及半导体中粒子和空穴配对形成的激子态。所有这些阶段和相变目前都被实验者和理论家非常积极地研究。在本文提出的理论研究中,将使用各种解析和数值方法。具体方法包括玻色化、重整化群、粒子-涡旋对偶变换、精确对角化和平均场理论的数值实现。重点是计算可以通过实验测量的物理量,并找到最直接地揭示这种非常规相的奇异性质的实验方法。该项目为研究生和博士后研究人员提供了学习先进的理论技术和计算方法的教育机会。PI还将积极参与为科学界提供的各种服务,包括组织国内和国际专业会议。非技术总结该奖项支持理论凝聚态物理的综合研究和教育。PI旨在研究某些材料中的电子和原子如何自我组织的不寻常方式。这种组织比简单的空间组织更微妙,比如晶体中规则的周期性原子阵列。其中一些状态是众所周知的,包括最初的巴丁、库珀和施里弗超导状态,这是一种可以在没有耗散的情况下导电的物质状态。其他州只是预测。PI将研究并从理论上解释电子和原子在各种材料中的这种非常规有序,在这些材料中可能会检测到它。这项研究包括发展相关的理论模型,并理解这些非常规相的性质,以及涉及它们的相变,作为其中心目标。重点是计算可以通过实验测量的物理量,寻找最能直接揭示非常规有序奇异性质的实验方法。该项目为研究生和博士后研究人员提供了学习先进理论技术和计算方法的教育机会。国际和平研究所还将积极参与为科学界提供的各种服务,包括组织国家和国际专业会议。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kun Yang其他文献
The Structural Optimization of Dimple in Microchannel for Heat Transfer Enhancement
微通道强化传热凹坑的结构优化
- DOI:
10.1115/1.4047513 - 发表时间:
2020-06 - 期刊:
- 影响因子:0
- 作者:
Xiuping Chen;Jiabing Wang;Kun Yang - 通讯作者:
Kun Yang
Robust H infinite Guaranteed Cost Control for Uncertain Switched Descriptor Delayed Systems with Nonlinear Disturbance
具有非线性扰动的不确定切换描述符延迟系统的鲁棒H无限保证成本控制
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Kun Yang;Yanxia Shen;Zhicheng Ji - 通讯作者:
Zhicheng Ji
An illustration of the optimization of combined cooling heating and power systems using genetic algorithm
使用遗传算法优化冷热电联供系统的图示
- DOI:
10.1177/0143624413497734 - 发表时间:
2014 - 期刊:
- 影响因子:1.7
- 作者:
Jiangjiang Wang;Kun Yang;Xutao Zhang;GuoHua Shi;C. Fu - 通讯作者:
C. Fu
Long Noncoding RNAs Hepatocyte Nuclear Factor 4A Antisense RNA 1 and Hepatocyte Nuclear Factor 1A Antisense RNA 1 Are Involved in Ritonavir-Induced Cytotoxicity in Hepatoma Cells
长非编码RNA肝细胞核因子4A反义RNA 1和肝细胞核因子1A反义RNA 1参与利托那韦诱导的肝癌细胞细胞毒性
- DOI:
10.1124/dmd.121.000693 - 发表时间:
2021-12 - 期刊:
- 影响因子:3.9
- 作者:
Xiaofei Wang;Yihang Yu;Pei Wang;Kun Yang;Yiting Wang;Liang Yan;Xiao-bo Zhong;Lirong Zhang - 通讯作者:
Lirong Zhang
Enhancing corrosion resistance of magnesium alloys via combining green chicory extracts and metal cations as organic-inorganic composite inhibitor
绿菊苣提取物与金属阳离子组合作为有机-无机复合缓蚀剂提高镁合金的耐腐蚀性能
- DOI:
10.1016/j.corcom.2022.06.002 - 发表时间:
2023-01 - 期刊:
- 影响因子:0
- 作者:
Pubo Li;Zexi Shao;Wei Fu;Wei Ma;Kun Yang;Hai Zhou;Mangmang Gao - 通讯作者:
Mangmang Gao
Kun Yang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kun Yang', 18)}}的其他基金
Interface, Edge and Bulk of Complex States of Matter
复杂物态的界面、边缘和块体
- 批准号:
2315954 - 财政年份:2023
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Exotic Phases and Their Interfaces in Correlated Many-Particle Systems
相关多粒子系统中的奇异相及其界面
- 批准号:
1932796 - 财政年份:2019
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Transport, Entanglement and Topology in Correlated Many-Particle Systems
相关多粒子系统中的输运、纠缠和拓扑
- 批准号:
1442366 - 财政年份:2015
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant
PAL : Personal and Social Communication Services for Lifestyle Monitoring
PAL:用于生活方式监测的个人和社交通信服务
- 批准号:
TS/H000186/1 - 财政年份:2009
- 资助金额:
$ 27万 - 项目类别:
Research Grant
Unconventional Phases and Phase Transitions in Strongly Correlated Fermionic Systems
强相关费米子系统中的非常规相和相变
- 批准号:
0704133 - 财政年份:2007
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant
Policy-based Model-driven Pervasive Service Creation and Adaptation (PANDA)
基于策略的模型驱动的普适服务创建和适应(PANDA)
- 批准号:
EP/D061881/1 - 财政年份:2006
- 资助金额:
$ 27万 - 项目类别:
Research Grant
Role of Disorder in Strongly Correlated Low-Dimensional Systems
无序在强相关低维系统中的作用
- 批准号:
0225698 - 财政年份:2002
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant
Dynamics, Thermodynamics and Spin Transport in Random Quantum Spin Chains
随机量子自旋链中的动力学、热力学和自旋输运
- 批准号:
9971541 - 财政年份:1999
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant
相似国自然基金
Zintl Phases点缺陷结构与热电性能调控
- 批准号:51771105
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
Synthesising novel phases of carbon by shear-induced phase transformations
通过剪切诱导相变合成碳的新相
- 批准号:
DP230101407 - 财政年份:2023
- 资助金额:
$ 27万 - 项目类别:
Discovery Projects
Investigation of magnetic field phase diagrams and magnetic field synthesis processes of binary alloy systems containing many types and multiple magnetic phases
多类型、多磁相二元合金体系磁场相图及磁场合成过程研究
- 批准号:
23H01714 - 财政年份:2023
- 资助金额:
$ 27万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Creation of Defect Phase Diagrams for Ordered Laves Phases
创建有序 Laves 相的缺陷相图
- 批准号:
576837-2022 - 财政年份:2022
- 资助金额:
$ 27万 - 项目类别:
Alliance Grants
Active Matter Phases and Phase Transitions in a Model Social Bacterium
社会细菌模型中的活性物质相和相变
- 批准号:
2210346 - 财政年份:2022
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant
Deformation Mechanism of Nanostructured Dual Phase Steels Composed of Soft and Hard Phases ~ control of mechanical properties based on heterogeneity
软硬相组成的纳米结构双相钢的变形机制~基于异质性的力学性能控制
- 批准号:
20H00306 - 财政年份:2020
- 资助金额:
$ 27万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Microscopic construction of strongly-correlated topological phases and the study on thier phase structures
强相关拓扑相的微观构建及三相结构研究
- 批准号:
18K03455 - 财政年份:2018
- 资助金额:
$ 27万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study of pressure-temperature phase diagram of superconductivity competing with electronic nematic and magnetic ordered phases in iron-based superconductor
铁基超导体中与电子向列相和磁有序相竞争的超导压力-温度相图研究
- 批准号:
18K03516 - 财政年份:2018
- 资助金额:
$ 27万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Molecular Studies of Phase Transitions in Soft Matter: The Lower Critical Solution Temperature Transition Études moléculaires de transitions de phases dans la matière molle: LCST
软物质相变的分子研究:较低临界溶液温度转变 - 研究材料相变的分子:LCST
- 批准号:
249997-2013 - 财政年份:2017
- 资助金额:
$ 27万 - 项目类别:
Discovery Grants Program - Individual
SBIR Phase I: Molecular Modeling as a Screening Tool to Separate Enantiomers of Chiral Compounds Using Polysaccharide-based Chiral Stationary Phases for Orphan Drugs
SBIR 第一阶段:分子模型作为筛选工具,使用基于多糖的手性固定相分离孤儿药手性化合物的对映体
- 批准号:
1621012 - 财政年份:2016
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
symmetry and phase transitions for a system with Floquet topological phases
具有 Floquet 拓扑相的系统的对称性和相变
- 批准号:
16K17760 - 财政年份:2016
- 资助金额:
$ 27万 - 项目类别:
Grant-in-Aid for Young Scientists (B)














{{item.name}}会员




