Quasiconformal Symmetries, Extremal Problems, and Patterson-Sullivan Theory
拟共形对称性、极值问题和帕特森-沙利文理论
基本信息
- 批准号:0706754
- 负责人:
- 金额:$ 15.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-07-01 至 2010-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The mathematics in this proposal lies at the intersection of geometric analysis, geometry, and low-dimensional topology. In particular, the researchers use geometric function theory in the form of the theory of quasiconformal mappings to probe analytic symmetries of hyperbolizable surfaces and $n$-manifolds. With equal emphasis, this proposal also details analytic questions in the theory of quasiconformal mappings. In particular the researchers tie together certain geometric invariants to the conjectured solution in dimensions three and above of the Teichmuller extremal problem. Another major theme in their work involves the interaction between dynamics and geometry as illuminated by Patterson-Sullivan theory. The researchers describe projects that study the generalization of the Patterson-Sullivan theory of Kleinian groups to both the setting of convex co-compact subgroups of the modular group, and to the purely analytic setting of discrete quasiconformal groups.The nexus of hyperbolic geometry, conformal analysis, and low-dimensional topology is a vast and fundamental area of study in mathematics. It dates back to the 19th century, when it was developed by such mathematicians as Gauss, Lobachevsky, Klein, and Poincare. These fields remain vital, as attested by the recent epochal results of G. Perelman on the Poincare and Geometrization Conjectures. As mathematics is inherently interconnected, surprising and beautiful applications are often found at the interfaces of mathematical fields. Recently, hyperbolic geometry has foundapplication in the study of discrete geometry and machine vision. Further, in physics both hyperbolic geometry and conformal analysis (especially in the guise of Teichmuller theory) have become a standard tool in the exploration of theoretical physics and cosmology. Wesleyan University has a strong dual identity as a research and teaching institution, and the proposers are strongly dedicated to innovation in both research and education. A core objective of the researchers is to use the broad and integrative relationship between hyperbolic geometry and geometric analysis to increase both the interest and strength of those advanced undergraduate and beginning graduate students enrolled in graduate analysis and geometry courses at Wesleyan University.
这个建议中的数学是几何分析、几何学和低维拓扑学的交叉点。 特别是,研究人员使用几何函数理论的形式的理论的拟共形映射探测分析对称的双曲曲面和$n$-流形。同样重要的是,这个建议也详细说明了拟共形映射理论中的分析问题。特别是研究人员将某些几何不变量与三维及以上Teichmuller极值问题的解联系在一起。他们工作的另一个主要主题涉及动力学和几何之间的相互作用,如帕特森-沙利文理论所阐明的那样。研究人员描述了研究Kleinian群的Patterson-Sullivan理论的推广到模群的凸余紧子群的设置以及离散拟共形群的纯解析设置的项目。双曲几何,共形分析和低维拓扑的关系是数学研究的一个广阔而基本的领域。它可以追溯到19世纪,当它是由这样的数学家高斯,罗巴切夫斯基,克莱因和庞加莱。 这些领域仍然是至关重要的,最近的划时代的结果G。佩雷尔曼关于庞加莱猜想和几何化猜想。由于数学本身是相互联系的,在数学领域的界面上经常会发现令人惊讶和美丽的应用。近年来,双曲几何在离散几何和机器视觉的研究中得到了广泛的应用。 此外,在物理学中,双曲几何和共形分析(特别是在泰希穆勒理论的幌子下)已经成为理论物理和宇宙学探索的标准工具。Wesleyan University作为研究和教学机构具有强大的双重身份,提案人强烈致力于研究和教育的创新。研究人员的一个核心目标是利用双曲几何和几何分析之间的广泛和综合关系,以增加那些在卫斯理大学研究生分析和几何课程就读的高年级本科生和研究生的兴趣和实力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Petra Taylor其他文献
School based bicycle safety education and bicycle injuries in children: a case-control study
学校自行车安全教育与儿童自行车伤害:病例对照研究
- DOI:
10.1136/ip.4.1.22 - 发表时间:
1998 - 期刊:
- 影响因子:3.7
- 作者:
J. Carlin;Petra Taylor;Terry Nolan - 通讯作者:
Terry Nolan
Petra Taylor的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Petra Taylor', 18)}}的其他基金
Infusing Data Science into Undergraduate STEM Education
将数据科学融入本科 STEM 教育
- 批准号:
1917002 - 财政年份:2019
- 资助金额:
$ 15.68万 - 项目类别:
Standard Grant
Collaborative Research: Analytic and Geometric Methods in Limited Angle Tomosynthesis
合作研究:有限角度断层合成中的解析和几何方法
- 批准号:
1031954 - 财政年份:2010
- 资助金额:
$ 15.68万 - 项目类别:
Standard Grant
Special Semester on Hyperbolic Manifolds and Geometric Analysis
双曲流形和几何分析特别学期
- 批准号:
0412837 - 财政年份:2004
- 资助金额:
$ 15.68万 - 项目类别:
Standard Grant
Collaborative Research: Analytic and Geometric Aspects of Convergence Groups
协作研究:收敛群的解析和几何方面
- 批准号:
0305704 - 财政年份:2003
- 资助金额:
$ 15.68万 - 项目类别:
Continuing Grant
The Interaction Between Geometry and Analysis in Geometric Function Theory and in the Theory of Discrete Groups
几何函数理论和离散群理论中几何与分析之间的相互作用
- 批准号:
0070335 - 财政年份:2000
- 资助金额:
$ 15.68万 - 项目类别:
Standard Grant
相似海外基金
REU Site: Research in Symmetries at the University of Kentucky
REU 网站:肯塔基大学对称性研究
- 批准号:
2349261 - 财政年份:2024
- 资助金额:
$ 15.68万 - 项目类别:
Continuing Grant
Geometric evolution of spaces with symmetries
具有对称性的空间的几何演化
- 批准号:
DP240101772 - 财政年份:2024
- 资助金额:
$ 15.68万 - 项目类别:
Discovery Projects
CAREER: Symmetries and Classical Physics in Machine Learning for Science and Engineering
职业:科学与工程机器学习中的对称性和经典物理学
- 批准号:
2339682 - 财政年份:2024
- 资助金额:
$ 15.68万 - 项目类别:
Continuing Grant
Lagrangian Multiforms for Symmetries and Integrability: Classification, Geometry, and Applications
对称性和可积性的拉格朗日多重形式:分类、几何和应用
- 批准号:
EP/Y006712/1 - 财政年份:2024
- 资助金额:
$ 15.68万 - 项目类别:
Fellowship
Characterization of Systematic Effects in Ultracold Neutron Tests of Fundamental Symmetries
基本对称性超冷中子测试中系统效应的表征
- 批准号:
2310015 - 财政年份:2023
- 资助金额:
$ 15.68万 - 项目类别:
Standard Grant
Research in Novel Symmetries of Quantum Field Theory and String Theory
量子场论和弦理论的新对称性研究
- 批准号:
2310279 - 财政年份:2023
- 资助金额:
$ 15.68万 - 项目类别:
Continuing Grant
Categorical Symmetries of Operator Algebras
算子代数的分类对称性
- 批准号:
2247202 - 财政年份:2023
- 资助金额:
$ 15.68万 - 项目类别:
Standard Grant
Canonical Singularities, Generalized Symmetries, and 5d Superconformal Field Theories
正则奇点、广义对称性和 5d 超共形场论
- 批准号:
EP/X01276X/1 - 财政年份:2023
- 资助金额:
$ 15.68万 - 项目类别:
Fellowship
CAREER: Low-energy Nuclear Physics and Fundamental Symmetries with Neutrons and Cryogenic Technologies
职业:低能核物理以及中子和低温技术的基本对称性
- 批准号:
2232117 - 财政年份:2023
- 资助金额:
$ 15.68万 - 项目类别:
Continuing Grant
Polymorphism in the symmetries of gastric pouch arrangements in the sea anemone Diadumene lineata
海葵胃袋排列对称性的多态性
- 批准号:
22KJ3132 - 财政年份:2023
- 资助金额:
$ 15.68万 - 项目类别:
Grant-in-Aid for JSPS Fellows














{{item.name}}会员




