Floer theories in symplectic geometry and low dimensional topology

辛几何和低维拓扑中的弗洛尔理论

基本信息

  • 批准号:
    0706967
  • 负责人:
  • 金额:
    $ 35.92万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-07-01 至 2011-06-30
  • 项目状态:
    已结题

项目摘要

A primary goal of this project is to finish the proof of the Atiyah-Floer conjecture by a version of the large structure limit in a formulation of mirror symmetry for Kaehler surfaces. This would relate the gauge theoretic Floer homology of a homology three-sphere to a Floer homology of Lagrangians which arise from moduli spaces of flat bundles associated to a Heegaard splitting. Another large part of the project aims to realize Lagrangian correspondences as composable functors on refined Donaldson-Fukaya categories. This should lead to topological invariants and TQFT's by using gauge theoretic moduli spaces to represent topological morphisms ( e.g. 3-cobordisms or tangles) as Lagrangian correspondences.The project belongs into the general realm of interaction between symplectic geometry and low dimensional topology. The construction of topological invariants via a symplectic category has been a guiding vision in this field although the geometric composition of Lagrangian correspondences is only partially defined. This project aims to realize this vision, based on a full algebraic definition of compositions. Moreover, a proof of the Atiyah-Floer conjecture would be an important step towards understanding the relations between different invariants of 3-manifolds. More generally, this project aims to further the understanding and exposition of the analytic foundations of gauge theory, pseudoholomorphic curves, and moduli spaces of nonlinear PDE's in general.
这个项目的一个主要目标是用Kaehler曲面镜像对称公式中的大结构极限的一个版本来完成Atiyah-Floer猜想的证明。这将把同调三球面的规范理论Floer同调与拉格朗日算子的Floer同调联系起来,后者源于与Heegaard分裂相关的平坦丛的模空间。该项目的另一大部分旨在将拉格朗日对应实现为精化Donaldson-Fukaya范畴上的可合成函子。通过使用规范理论模空间将拓扑态射(如3-余切或纠缠)表示为拉格朗日对应,这将导致拓扑不变量和TQFT。该项目属于辛几何和低维拓扑相互作用的一般领域。通过辛范畴构造拓扑不变量一直是这一领域的指导思想,尽管拉格朗日对应的几何组成只被部分定义。这个项目旨在实现这一愿景,基于组成的完整代数定义。此外,Atiyah-Floer猜想的证明将是理解三维流形不同不变量之间关系的重要一步。更广泛地说,这个项目旨在进一步理解和阐述规范理论的分析基础,伪全纯曲线,以及一般的非线性偏微分方程模空间。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Katrin Wehrheim其他文献

L2-Topology and Lagrangians in the Space of Connections Over a Riemann Surface
  • DOI:
    10.1007/s00039-010-0086-3
  • 发表时间:
    2010-09-02
  • 期刊:
  • 影响因子:
    2.500
  • 作者:
    Tomasz S. Mrowka;Katrin Wehrheim
  • 通讯作者:
    Katrin Wehrheim

Katrin Wehrheim的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Katrin Wehrheim', 18)}}的其他基金

Connections between Symplectic and Low Dimensional Topology
辛和低维拓扑之间的联系
  • 批准号:
    1708916
  • 财政年份:
    2017
  • 资助金额:
    $ 35.92万
  • 项目类别:
    Standard Grant
Pseudoholomorphic Curves in Topology and Symplectic Geometry
拓扑和辛几何中的伪全纯曲线
  • 批准号:
    1442345
  • 财政年份:
    2014
  • 资助金额:
    $ 35.92万
  • 项目类别:
    Continuing Grant
Pseudoholomorphic Curves in Topology and Symplectic Geometry
拓扑和辛几何中的伪全纯曲线
  • 批准号:
    1308684
  • 财政年份:
    2013
  • 资助金额:
    $ 35.92万
  • 项目类别:
    Continuing Grant
Contact manifolds and Heegaard Floer homology
接触流形和 Heegaard Florer 同源性
  • 批准号:
    1104690
  • 财政年份:
    2011
  • 资助金额:
    $ 35.92万
  • 项目类别:
    Standard Grant
CAREER: The symplectic category, Floer field theory, and relations to gauge theory and topology
职业:辛范畴、弗洛尔场论以及与规范理论和拓扑的关系
  • 批准号:
    0844188
  • 财政年份:
    2009
  • 资助金额:
    $ 35.92万
  • 项目类别:
    Standard Grant
Instanton Floer Homology with Lagrangian Boundary Conditions and the Atiyah-Floer Conjecture
具有拉格朗日边界条件的 Instanton Floer 同调和 Atiyah-Floer 猜想
  • 批准号:
    0636580
  • 财政年份:
    2006
  • 资助金额:
    $ 35.92万
  • 项目类别:
    Standard Grant
Instanton Floer Homology with Lagrangian Boundary Conditions and the Atiyah-Floer Conjecture
具有拉格朗日边界条件的 Instanton Floer 同调和 Atiyah-Floer 猜想
  • 批准号:
    0405647
  • 财政年份:
    2004
  • 资助金额:
    $ 35.92万
  • 项目类别:
    Standard Grant

相似海外基金

Translations between Type Theories
类型理论之间的翻译
  • 批准号:
    EP/Z000602/1
  • 财政年份:
    2025
  • 资助金额:
    $ 35.92万
  • 项目类别:
    Research Grant
Uncovering Mechanisms of Racial Inequalities in ADRD: Psychosocial Risk and Resilience Factors for White Matter Integrity
揭示 ADRD 中种族不平等的机制:心理社会风险和白质完整性的弹性因素
  • 批准号:
    10676358
  • 财政年份:
    2024
  • 资助金额:
    $ 35.92万
  • 项目类别:
An Integrated Model of Contextual Safety, Social Safety, and Social Vigilance as Psychosocial Contributors to Cardiovascular Disease
情境安全、社会安全和社会警惕作为心血管疾病社会心理因素的综合模型
  • 批准号:
    10749134
  • 财政年份:
    2024
  • 资助金额:
    $ 35.92万
  • 项目类别:
Cognitive imprecision and ageing: experimental investigation of new theories of decision-making
认知不精确与衰老:新决策理论的实验研究
  • 批准号:
    24K00237
  • 财政年份:
    2024
  • 资助金额:
    $ 35.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
The neural underpinnings of speech and nonspeech auditory processing in autism: Implications for language
自闭症患者言语和非言语听觉处理的神经基础:对语言的影响
  • 批准号:
    10827051
  • 财政年份:
    2024
  • 资助金额:
    $ 35.92万
  • 项目类别:
Bilingualism as a cognitive reserve factor: the behavioral and neural underpinnings of cognitive control in bilingual patients with aphasia
双语作为认知储备因素:双语失语症患者认知控制的行为和神经基础
  • 批准号:
    10824767
  • 财政年份:
    2024
  • 资助金额:
    $ 35.92万
  • 项目类别:
Mental Health and Occupational Functioning in Nurses: An investigation of anxiety sensitivity and factors affecting future use of an mHealth intervention
护士的心理健康和职业功能:焦虑敏感性和影响未来使用移动健康干预措施的因素的调查
  • 批准号:
    10826673
  • 财政年份:
    2024
  • 资助金额:
    $ 35.92万
  • 项目类别:
REU Site: Quantitative Rules of Life: General Theories across Biological Systems
REU 网站:生命的定量规则:跨生物系统的一般理论
  • 批准号:
    2349052
  • 财政年份:
    2024
  • 资助金额:
    $ 35.92万
  • 项目类别:
    Standard Grant
Naturalistic Social Communication in Autistic Females: Identification of Speech Prosody Markers
自闭症女性的自然社交沟通:语音韵律标记的识别
  • 批准号:
    10823000
  • 财政年份:
    2024
  • 资助金额:
    $ 35.92万
  • 项目类别:
CAREER: Evaluating Theories of Polymer Crystallization by Directly Calculating the Nucleation Barrier in a Polymer Melt
职业:通过直接计算聚合物熔体中的成核势垒来评估聚合物结晶理论
  • 批准号:
    2338690
  • 财政年份:
    2024
  • 资助金额:
    $ 35.92万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了