Collaborative Research: Optimal Design of Experiments for Categorical Data
协作研究:分类数据实验的优化设计
基本信息
- 批准号:0707013
- 负责人:
- 金额:$ 14.43万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-06-01 至 2011-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The investigators develop methods for identifying optimal and efficient designs for experiments with categorical data. The project consists of three main parts. (i) Identification of optimal designs for binary data under generalized linear regression models. This part includes consideration of models in which slope and intercept parameters can vary for different groups of subjects and models with a random subject effect. (ii) Identification of optimal allocations of treatments to blocks for comparative studies with binary data. A logistic model is a popular choice for such studies. (iii) Identification of optimal designs for count data under loglinear regression models. In this setting, the investigators focus also on optimal designs for models that can account for subject heterogeneity. This project is innovative in that it uses a new technique that has vast advantages over the commonly used geometric approach. Categorical responses are very common in designed experiments in many scientific studies, such as drug discovery, clinical trials, social sciences, marketing, etc. Generalized Linear Models (GLMs) are widely used for modeling such data. Using efficient designs for collecting data in such experiments is critically important. It can reduce the sample size needed for achieving a specified precision, thereby reducing the cost, or improve the precision of estimates for a specified sample size. While research on optimal designs for linear models has been systematically developed over more than 30 years, there are very few research publications on optimal designs for GLMs. This project is important both for the introduction of novel theoretical tools and for its impact on applications. For example, the results of the project significantly reduce the time, money, and the number of patients needed in clinical trials, as well as other scientific studies. The results can help the U.S. Food and Drug Administration to improve its guidelines for clinical trials.
研究人员开发的方法,确定最佳和有效的设计实验分类数据。该项目包括三个主要部分。(i)广义线性回归模型下二元数据最优设计的识别。本部分包括考虑斜率和截距参数可能因不同受试者组而异的模型以及具有随机受试者效应的模型。(ii)确定处理的最佳分配到块的比较研究与二进制数据。逻辑模型是此类研究的热门选择。(iii)对数线性回归模型下计数资料最优设计之辨识。在这种情况下,研究人员还关注可以解释受试者异质性的模型的最佳设计。这个项目是创新的,因为它使用了一种新的技术,具有巨大的优势,比常用的几何方法。在许多科学研究中,如药物发现、临床试验、社会科学、市场营销等,分类反应在设计的实验中非常常见。广义线性模型(GLM)被广泛用于对此类数据进行建模。在这样的实验中使用有效的设计来收集数据是至关重要的。它可以减少达到指定精度所需的样本量,从而降低成本,或提高指定样本量的估计精度。虽然关于线性模型最优设计的研究已经系统地发展了30多年,但关于GLM最优设计的研究出版物却很少。这个项目是重要的新的理论工具的引入及其对应用的影响。例如,该项目的结果显着减少了临床试验以及其他科学研究所需的时间,金钱和患者数量。这些结果可以帮助美国食品和药物管理局改进其临床试验指南。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Min Yang其他文献
Surfactant-Assisted Synthesis of Palladium Nanosheets and Nanochains for the Electrooxidation of Ethanol
表面活性剂辅助合成用于乙醇电氧化的钯纳米片和纳米链
- DOI:
10.1021/acsami.0c20146 - 发表时间:
2021 - 期刊:
- 影响因子:9.5
- 作者:
Min Yang;Mingyuan Pang;Jianyu Chen;Fahui Gao;Hongliang Li;Peizhi Guo - 通讯作者:
Peizhi Guo
Controlled growth of MoO3 nanorods on transparent conducting substrates
MoO3 纳米棒在透明导电基底上的受控生长
- DOI:
10.1016/j.matlet.2014.07.143 - 发表时间:
2014 - 期刊:
- 影响因子:3
- 作者:
Ying Ma;Xia Zhang;Min Yang;Yanxing Qi - 通讯作者:
Yanxing Qi
High-throughput, simultaneous quantitation of hemoglobin adducts of acrylamide, glycidamide, and ethylene oxide using UHPLC-MS/MS.
使用 UHPLC-MS/MS 对丙烯酰胺、缩水甘油酰胺和环氧乙烷的血红蛋白加合物进行高通量同步定量。
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Min Yang;Tunde Frame;Chui Tse;H. Vesper - 通讯作者:
H. Vesper
Dancing with Wolves: An Intra-process Isolation Technique with Privileged Hardware
与狼共舞:使用特权硬件的进程内隔离技术
- DOI:
10.1109/tdsc.2022.3168089 - 发表时间:
2022 - 期刊:
- 影响因子:7.3
- 作者:
Chenggang Wu;Mengyao Xie;Zhe Wang;Yinqian Zhang;Kangjie Lu;Xiaofeng Zhang;Yuanming Lai;Yan Kang;Min Yang;Tao Li - 通讯作者:
Tao Li
MAPK5 and MAPK10 overexpression influences strawberry fruit ripening, antioxidant capacity and resistance to Botrytis cinerea
MAPK5和MAPK10过表达影响草莓果实成熟、抗氧化能力和灰霉病抗性
- DOI:
10.1007/s00425-021-03804-z - 发表时间:
2021-12 - 期刊:
- 影响因子:4.3
- 作者:
Yunting Zhang;Yu Long;Yiting Liu;Min Yang;Liangxin Wang;Xiaoyang Liu;Yong Zhang;Qing Chen;Mengyao Li;Yuanxiu Lin;Haoru Tang;Ya Luo - 通讯作者:
Ya Luo
Min Yang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Min Yang', 18)}}的其他基金
Collaborative Research: Design-Based Optimal Subdata Selection Using Mixture-of-Experts Models to Account for Big Data Heterogeneity
协作研究:基于设计的最佳子数据选择,使用专家混合模型来解释大数据异构性
- 批准号:
2210546 - 财政年份:2022
- 资助金额:
$ 14.43万 - 项目类别:
Standard Grant
Collaborative Research: Information-Based Subdata Selection Inspired by Optimal Design of Experiments
协作研究:受实验优化设计启发的基于信息的子数据选择
- 批准号:
1811291 - 财政年份:2018
- 资助金额:
$ 14.43万 - 项目类别:
Standard Grant
Collaborative research: A major leap forward: Optimal designs for correlated data, multiple objectives, and multiple covariates
协作研究:重大飞跃:相关数据、多目标和多协变量的优化设计
- 批准号:
1407518 - 财政年份:2014
- 资助金额:
$ 14.43万 - 项目类别:
Continuing Grant
Synthesis of glycosyl-novobiocins: probes of Hsp90 C-terminal affinity binding and novel anti-cancer drugs
糖基新生霉素的合成:Hsp90 C 端亲和结合探针和新型抗癌药物
- 批准号:
EP/K023071/1 - 财政年份:2013
- 资助金额:
$ 14.43万 - 项目类别:
Research Grant
CAREER: Optimal Design of Experiments for Generalized Linear Models
职业:广义线性模型实验的优化设计
- 批准号:
1322797 - 财政年份:2012
- 资助金额:
$ 14.43万 - 项目类别:
Continuing Grant
CAREER: Optimal Design of Experiments for Generalized Linear Models
职业:广义线性模型实验的优化设计
- 批准号:
0748409 - 财政年份:2008
- 资助金额:
$ 14.43万 - 项目类别:
Continuing Grant
Crossover Designs for Comparing Test Treatments with a Control Treatment: Optimality, Efficiency, and Robustness
用于比较测试处理与控制处理的交叉设计:最优性、效率和稳健性
- 批准号:
0600943 - 财政年份:2005
- 资助金额:
$ 14.43万 - 项目类别:
Standard Grant
Crossover Designs for Comparing Test Treatments with a Control Treatment: Optimality, Efficiency, and Robustness
用于比较测试处理与控制处理的交叉设计:最优性、效率和稳健性
- 批准号:
0304661 - 财政年份:2003
- 资助金额:
$ 14.43万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Mechanics of Optimal Biomimetic Torene Plates and Shells with Ultra-high Genus
合作研究:超高属度最优仿生Torene板壳力学
- 批准号:
2323415 - 财政年份:2024
- 资助金额:
$ 14.43万 - 项目类别:
Standard Grant
Collaborative Research: Integrating Optimal Function and Compliant Mechanisms for Ubiquitous Lower-Limb Powered Prostheses
合作研究:将优化功能和合规机制整合到无处不在的下肢动力假肢中
- 批准号:
2344765 - 财政年份:2024
- 资助金额:
$ 14.43万 - 项目类别:
Standard Grant
Collaborative Research: Can Irregular Structural Patterns Beat Perfect Lattices? Biomimicry for Optimal Acoustic Absorption
合作研究:不规则结构模式能否击败完美晶格?
- 批准号:
2341950 - 财政年份:2024
- 资助金额:
$ 14.43万 - 项目类别:
Standard Grant
Collaborative Research: Integrating Optimal Function and Compliant Mechanisms for Ubiquitous Lower-Limb Powered Prostheses
合作研究:将优化功能和合规机制整合到无处不在的下肢动力假肢中
- 批准号:
2344766 - 财政年份:2024
- 资助金额:
$ 14.43万 - 项目类别:
Standard Grant
Collaborative Research: Mechanics of Optimal Biomimetic Torene Plates and Shells with Ultra-high Genus
合作研究:超高属度最优仿生Torene板壳力学
- 批准号:
2323414 - 财政年份:2024
- 资助金额:
$ 14.43万 - 项目类别:
Standard Grant
Collaborative Research: Can Irregular Structural Patterns Beat Perfect Lattices? Biomimicry for Optimal Acoustic Absorption
合作研究:不规则结构模式能否击败完美晶格?
- 批准号:
2341951 - 财政年份:2024
- 资助金额:
$ 14.43万 - 项目类别:
Standard Grant
Collaborative Research: EAGER--Evaluation of Optimal Mesonetwork Design for Monitoring and Predicting North American Monsoon (NAM) Convection Using Observing System Simulation
合作研究:EAGER——利用观测系统模拟监测和预测北美季风(NAM)对流的最佳中观网络设计评估
- 批准号:
2308410 - 财政年份:2023
- 资助金额:
$ 14.43万 - 项目类别:
Standard Grant
Collaborative Research: ECCS: Small: Personalized RF Sensing: Learning Optimal Representations of Human Activities and Ethogram on the Fly
合作研究:ECCS:小型:个性化射频传感:学习人类活动的最佳表示和动态行为图
- 批准号:
2233503 - 财政年份:2023
- 资助金额:
$ 14.43万 - 项目类别:
Standard Grant
Collaborative Research: Parabolic Monge-Ampère Equations, Computational Optimal Transport, and Geometric Optics
合作研究:抛物线 Monge-AmpeÌre 方程、计算最优传输和几何光学
- 批准号:
2246606 - 财政年份:2023
- 资助金额:
$ 14.43万 - 项目类别:
Standard Grant
Collaborative Research: An Optimal Algorithm for Orthogonal Eigenvectors of Symmetric Tridiagonals
协作研究:对称三对角线正交特征向量的最优算法
- 批准号:
2309596 - 财政年份:2023
- 资助金额:
$ 14.43万 - 项目类别:
Standard Grant