Collaborative Research: Mechanics of Optimal Biomimetic Torene Plates and Shells with Ultra-high Genus
合作研究:超高属度最优仿生Torene板壳力学
基本信息
- 批准号:2323414
- 负责人:
- 金额:$ 33.46万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-01-01 至 2026-12-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Plates and shells have been used in diverse fields such as civil, mechanical, aeronautical, and marine engineering. A hallmark feature of these structures is their ability to support large loads despite their thin architecture. One such shell structure, responsible for guarding the genome inside our cells, is the nuclear envelope (i.e., the boundary of the nucleus). This structure has a unique geometry comprised of two concentric hollow spherical shells fused at thousands of sites with torus-shaped holes, and exhibits one order of magnitude amplification in flexural stiffness. Inspired by this finding, this study investigates a new class of optimal biomimetic shell structures, termed torenes, comprising concentric shell layers fused with torus-shaped holes. The torene architecture could enable new designs in aircrafts, submarines, and rockets to achieve high resilience in countering extreme natural forces. The discovered principles can guide the design of lightweight prosthetics, and protective gear for defense personnel and athletes to counter high impact loads. The research findings will be disseminated by hands-on pedagogical demonstrations, scientoons (science-based cartoons), virtual mechanics labs, journal publications and guest lectures for high school students. While advancing the field of architected plates and shells, the research will engage and train a diverse group of students, including those from underrepresented groups. Poised at the interface of mechanics, geometry, and optimization, the research will investigate the mechanical properties and failure mechanisms of plate and shell structures with ultra-high genus. The study will perform finite element analyses to investigate force-deformation response and stability of torene structures under in-plane and out-of-plane loadings. This information will be used to construct proper objective functions and constraints to perform topology optimization of multilayer plates and shells. In particular, numerical optimization will be used to identify topologies that maximize performance of torene structures under different external loads and functional requirements. The study will apply the discovered geometric principles to design and experimentally test 3D torene architectures derived from 2D materials for achieving ultra-flexural stiffness. Overall, the work will disentangle the roles of differential geometry and associated geometric parameters in modulating the strength and stability of a new class of topological structures. This approach allows an investigation of structures at different length scales leading to the determination of scaling laws and scaling invariance.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
板和壳已被用于不同的领域,如民用,机械,航空和海洋工程。这些结构的一个标志性特征是它们能够支撑大负载,尽管它们的结构很薄。一个这样的壳结构,负责保护我们细胞内的基因组,是核被膜(即,核的边界)。这种结构具有独特的几何形状,由两个同心的中空球壳在数千个具有环形孔的位置处融合而成,并且在弯曲刚度方面表现出一个数量级的放大。受这一发现的启发,本研究探讨了一类新的最佳仿生壳结构,称为torenes,包括同心壳层与圆环形孔融合。Torene架构可以使飞机、潜艇和火箭的新设计在对抗极端自然力方面实现高弹性。这些发现的原理可以指导轻型假肢的设计,以及国防人员和运动员对抗高冲击载荷的保护装备。研究结果将通过实践教学演示、科学卡通(基于科学的卡通)、虚拟力学实验室、期刊出版物和高中生客座讲座进行传播。在推进建筑板和壳领域的同时,该研究将吸引和培养一批多样化的学生,包括来自代表性不足的群体的学生。 本研究立足于力学、几何和优化的交叉点,研究超高亏格板壳结构的力学性能和破坏机理。该研究将进行有限元分析,以研究Torene结构在面内和面外载荷下的力-变形响应和稳定性。这些信息将被用来构建适当的目标函数和约束,以执行多层板和壳的拓扑优化。特别是,数值优化将被用来确定拓扑结构,最大限度地提高性能的托琳结构在不同的外部负载和功能要求。该研究将应用所发现的几何原理来设计和实验测试来自2D材料的3D torene架构,以实现超弯曲刚度。总体而言,这项工作将解开微分几何和相关的几何参数在调制一类新的拓扑结构的强度和稳定性的作用。这种方法允许在不同的长度尺度下对结构进行调查,从而确定尺度律和尺度不变性。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ashutosh Agrawal其他文献
A Monte Carlo Framework for Modeling Protein Assembly on Lipid Membranes
- DOI:
10.1016/j.bpj.2019.11.3049 - 发表时间:
2020-02-07 - 期刊:
- 影响因子:
- 作者:
Carlos A. Osorio Merea;Ashutosh Agrawal - 通讯作者:
Ashutosh Agrawal
Mechanics of membrane–membrane adhesion
膜-膜粘附力学
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Ashutosh Agrawal - 通讯作者:
Ashutosh Agrawal
Anisotropic spontaneous curvatures in lipid membranes.
脂质膜中的各向异性自发曲率。
- DOI:
10.1103/physreve.89.062715 - 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Nikhil Walani;Jennifer Torres;Ashutosh Agrawal - 通讯作者:
Ashutosh Agrawal
Electromechanics of lipid-modulated gating of Kv channels
Kv 通道脂质调节门控的机电学
- DOI:
10.1101/2020.06.12.051482 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Nidhin Thomas;K. Mandadapu;Ashutosh Agrawal - 通讯作者:
Ashutosh Agrawal
Universal relationships to determine adhesion energy from vesicle-substrate interactions
通过囊泡-底物相互作用确定粘附能的通用关系
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
E. Irajizad;Ashutosh Agrawal - 通讯作者:
Ashutosh Agrawal
Ashutosh Agrawal的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ashutosh Agrawal', 18)}}的其他基金
Collaborative Research: Electro-Mechanical Interactions in Biological Membranes
合作研究:生物膜中的机电相互作用
- 批准号:
1931084 - 财政年份:2019
- 资助金额:
$ 33.46万 - 项目类别:
Standard Grant
Collaborative Research: Biophysical and Molecular Mechanisms of Ultrafast Endocytosis at Neuronal Synapses
合作研究:神经元突触超快内吞作用的生物物理和分子机制
- 批准号:
1727271 - 财政年份:2017
- 资助金额:
$ 33.46万 - 项目类别:
Standard Grant
Collaborative Research: Mechanics of Tension-Induced Adaptation in Clathrin-Mediated Endocytosis
合作研究:网格蛋白介导的内吞作用中张力诱导的适应机制
- 批准号:
1562043 - 财政年份:2016
- 资助金额:
$ 33.46万 - 项目类别:
Standard Grant
Collaborative Research: Mechanics of the Cell Nucleus Lipid Bilayers
合作研究:细胞核脂质双层的力学
- 批准号:
1437330 - 财政年份:2014
- 资助金额:
$ 33.46万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Mechanics of Optimal Biomimetic Torene Plates and Shells with Ultra-high Genus
合作研究:超高属度最优仿生Torene板壳力学
- 批准号:
2323415 - 财政年份:2024
- 资助金额:
$ 33.46万 - 项目类别:
Standard Grant
Collaborative Research: Extreme Mechanics of the Human Brain via Integrated In Vivo and Ex Vivo Mechanical Experiments
合作研究:通过体内和离体综合力学实验研究人脑的极限力学
- 批准号:
2331294 - 财政年份:2024
- 资助金额:
$ 33.46万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
- 批准号:
2413579 - 财政年份:2024
- 资助金额:
$ 33.46万 - 项目类别:
Standard Grant
Collaborative Research: Extreme Mechanics of the Human Brain via Integrated In Vivo and Ex Vivo Mechanical Experiments
合作研究:通过体内和离体综合力学实验研究人脑的极限力学
- 批准号:
2331295 - 财政年份:2024
- 资助金额:
$ 33.46万 - 项目类别:
Standard Grant
Collaborative Research: The impact of instruction on student thinking about measurement in classical and quantum mechanics experiments
合作研究:教学对学生思考经典和量子力学实验中的测量的影响
- 批准号:
2336135 - 财政年份:2024
- 资助金额:
$ 33.46万 - 项目类别:
Standard Grant
Collaborative Research: Extreme Mechanics of the Human Brain via Integrated In Vivo and Ex Vivo Mechanical Experiments
合作研究:通过体内和离体综合力学实验研究人脑的极限力学
- 批准号:
2331296 - 财政年份:2024
- 资助金额:
$ 33.46万 - 项目类别:
Standard Grant
Collaborative Research: The impact of instruction on student thinking about measurement in classical and quantum mechanics experiments
合作研究:教学对学生思考经典和量子力学实验中的测量的影响
- 批准号:
2336136 - 财政年份:2024
- 资助金额:
$ 33.46万 - 项目类别:
Standard Grant
Collaborative Research: Multiscale Analysis and Simulation of Biofilm Mechanics
合作研究:生物膜力学的多尺度分析与模拟
- 批准号:
2313746 - 财政年份:2023
- 资助金额:
$ 33.46万 - 项目类别:
Continuing Grant
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
- 批准号:
2323727 - 财政年份:2023
- 资助金额:
$ 33.46万 - 项目类别:
Standard Grant
Collaborative Research: Exploring the Role of Ultra-Soft Inclusions in the Mechanics of Fibrous Materials
合作研究:探索超软夹杂物在纤维材料力学中的作用
- 批准号:
2235856 - 财政年份:2023
- 资助金额:
$ 33.46万 - 项目类别:
Standard Grant