The Full Penrose Inequality, the Hoop Conjecture, and Quasi-Local Mass
完全彭罗斯不等式、呼普猜想和准局部质量
基本信息
- 批准号:0707086
- 负责人:
- 金额:$ 10.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-07-01 至 2010-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In 1973 R. Penrose proposed a conjecture which relates the total mass of a spacetime to the area of its event horizons (boundary of black holes) via the inequality: total mass squared is greater than or equal to the total area of the event horizons divided by 16 pi. The primary goal of this research is to prove the full Penrose Inequality, and to use the methods developed to study several related problems concerning mass in General Relativity. It is best to view this conjecture as an inequality for an arbitrary spacelike slice of a spacetime, and it has been confirmed (by Huisken and Ilmanen for one black hole, and by Bray for finitely many black holes) in the case that the slice has zero second fundamental form (the time symmetric case). For the first time the conjecture for a general slice appears to be within reach in light of a recent discovery by H. Bray and the author, which reduces the problem to solving a canonical system of partial differential equations. Unexpectedly, this new method has revealed a significant connection between the Penrose Inequality, the Hoop Conjecture, and the Liu-Yau quasilocal mass. The author intends to further investigate and develop these connections, with the aim of obtaining a definitive necessary and sufficient condition for black hole formation, as well as a modified version of the Liu-Yau mass which overcomes some of its inherent difficulties. The Penrose Inequality was originally put forth by Penrose to study the most important open question in classical General Relativity today, namely the Cosmic Censorship Conjecture. This conjecture asserts that whenever singularities occur in the evolution of spacetime (which is expected to be a generic phenomenon) they must always be hidden from the outside world by an event horizon, that is, they must always lie inside a black hole. According to Penrose's heuristic derivation, the Penrose Inequality is essentially a necessary condition for cosmic censorship to hold. Thus if the Penrose Inequality were to be confirmed it would add significantly to the general belief in the validity of cosmic censorship, which in turn is fundamental for determining how well General Relativity is behaved as a physical theory. Furthermore, a correction to the Liu-Yau quasilocal mass would possibly lead to the first fully meaningful expression of local energy density for the gravitational field. This in turn should lead to new advances in the study of the Cauchy problem for the Einstein Equations, as well as in the study of black hole formation (the Hoop Conjecture). Lastly, it is a general theme in General Relativity that theorems involving initial data sets for the Einstein Equations (such as the Penrose Inequality and Positive Mass Theorem) are often proved first in the easier time symmetric case, while the general case is then some how reduced back to time symmetry. It is expected that the methods developed for the full Penrose Inequality will provide a new powerful tool for making such a reduction to time symmetry, and will therefore have numerous applications to a wide range of problems in General Relativity.
1973年,R. Penrose提出了一个猜想,通过不等式将时空的总质量与其事件视界(黑洞边界)的面积联系起来:总质量的平方大于或等于事件视界的总面积除以16。本研究的主要目的是证明完整的彭罗斯不等式,并利用所开发的方法研究广义相对论中有关质量的几个相关问题。最好把这个猜想看作是一个时空的任意类空切片的不等式,并且在切片具有零秒基本形式(时间对称情况)的情况下(由Huisken和Ilmanen对一个黑洞和由Bray对有限多个黑洞),它已经得到了证实。根据H. Bray和作者最近的一项发现,一般切片的猜想第一次显得触手可及,该发现将问题简化为求解一个典型的偏微分方程组。出乎意料的是,这种新方法揭示了Penrose不等式、Hoop猜想和Liu-Yau准局域质量之间的重要联系。作者打算进一步研究和发展这些联系,目的是获得黑洞形成的明确的充分必要条件,以及克服一些固有困难的刘佑质量的修正版本。彭罗斯不等式最初是由彭罗斯提出的,目的是研究当今经典广义相对论中最重要的开放性问题,即宇宙审查猜想。这个猜想断言,每当奇点在时空演化中出现时(这被认为是一种普遍现象),它们一定总是被事件视界隐藏起来,不被外界所知,也就是说,它们一定总是在黑洞内。根据彭罗斯的启发式推导,彭罗斯不等式本质上是宇宙审查成立的必要条件。因此,如果彭罗斯不等式得到证实,它将极大地增加对宇宙审查有效性的普遍信念,这反过来又是决定广义相对论作为一个物理理论表现得如何的基础。此外,对Liu-Yau准局域质量的修正可能会导致引力场局域能量密度的第一个完全有意义的表达式。这反过来应该会导致爱因斯坦方程的柯西问题研究的新进展,以及黑洞形成的研究(环猜想)。最后,广义相对论的一个普遍主题是,涉及爱因斯坦方程初始数据集的定理(如彭罗斯不等式和正质量定理)通常首先在更简单的时间对称情况下证明,而一般情况则以某种方式还原为时间对称。人们期望为完整的彭罗斯不等式开发的方法将提供一种新的强大的工具来简化时间对称性,因此将在广义相对论的广泛问题中得到大量应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Marcus Khuri其他文献
「儒学における「鐘」をめぐる数の思想」
“对儒家‘钟’数的思考”
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Marcus Khuri;Martin Reiris;Gilbert Weinstein;Sumio Yamada;Y. Ichinohe et al.;田中有紀 - 通讯作者:
田中有紀
A variational perspective on the thermodynamics of non-isothermal reacting open systems
非等温反应开放系统热力学的变分视角
- DOI:
10.1016/j.ifacol.2021.11.055 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Marcus Khuri;Gilbert Weinstein;山田 澄生;Francois Gay-Balmaz,Yoshimura Hiroaki - 通讯作者:
Francois Gay-Balmaz,Yoshimura Hiroaki
A^1*-fibrations and A^1*-fibrations on affine threefolds
仿射三重上的 A^1*-纤维和 A^1*-纤维
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Marcus Khuri;Gilbert Weinstein;Sumio Yamada;渡部善隆;宮西正宜 - 通讯作者:
宮西正宜
Harmonic maps in general relativity
广义相对论中的调和图
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Marcus Khuri;Gilbert Weinstein;Sumio Yamada;Sumio Yamada;山田澄生;山田澄生;山田澄生;山田澄生;山田澄生;山田 澄生;山田 澄生;山田 澄生;山田 澄生;山田 澄生;山田 澄生;山田 澄生;山田 澄生;山田 澄生 - 通讯作者:
山田 澄生
アインシュタイン・マックスウェル方程式の幾何学
爱因斯坦-麦克斯韦方程的几何
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Marcus Khuri;Gilbert Weinstein;Sumio Yamada;Sumio Yamada;山田澄生;山田澄生;山田澄生;山田澄生;山田澄生;山田 澄生;山田 澄生;山田 澄生;山田 澄生;山田 澄生;山田 澄生;山田 澄生;山田 澄生;山田 澄生;山田澄生;山田澄生;山田澄生;Sumio Yamada;Sumio Yamada;山田澄生;山田澄生;Sumio Yamada;山田澄生 - 通讯作者:
山田澄生
Marcus Khuri的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Marcus Khuri', 18)}}的其他基金
Black Holes, Geometric Inequalities, and Partial Differential Equations
黑洞、几何不等式和偏微分方程
- 批准号:
2104229 - 财政年份:2021
- 资助金额:
$ 10.25万 - 项目类别:
Standard Grant
Mass, Geometric Inequalities, and Partial Differential Equations in General Relativity
广义相对论中的质量、几何不等式和偏微分方程
- 批准号:
1708798 - 财政年份:2017
- 资助金额:
$ 10.25万 - 项目类别:
Standard Grant
Geometric Inequalities and Partial Differential Equations in General Relativity
广义相对论中的几何不等式和偏微分方程
- 批准号:
1308753 - 财政年份:2013
- 资助金额:
$ 10.25万 - 项目类别:
Standard Grant
相似国自然基金
Penrose 变换的逆变换及四元切k-Cauchy-Fueter算子
- 批准号:11326079
- 批准年份:2013
- 资助金额:3.0 万元
- 项目类别:数学天元基金项目
Kerr时空的几何结构和Newman-Penrose框架
- 批准号:11171329
- 批准年份:2011
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Conference: GLOW: Support for the 2023 Penrose Conference on the role of outburst floods in Earth and planetary evolution
会议:GLOW:支持 2023 年彭罗斯会议,讨论突发洪水在地球和行星演化中的作用
- 批准号:
2302796 - 财政年份:2023
- 资助金额:
$ 10.25万 - 项目类别:
Standard Grant
Conference: Participant Support for a GSA Penrose Conference on the North American Cordillera
会议:与会者对北美科迪勒拉山脉 GSA 彭罗斯会议的支持
- 批准号:
2310789 - 财政年份:2023
- 资助金额:
$ 10.25万 - 项目类别:
Standard Grant
Penrose processes in an analogue black hole formed in hybrid light-matter (polariton) superfluid
混合光物质(极化子)超流体中形成的模拟黑洞中的彭罗斯过程
- 批准号:
ST/W006294/1 - 财政年份:2022
- 资助金额:
$ 10.25万 - 项目类别:
Research Grant
The Petrov-Penrose classification in higher dimensions - Curvature asymptotics
高维中的 Petrov-Penrose 分类 - 曲率渐近
- 批准号:
561866-2021 - 财政年份:2021
- 资助金额:
$ 10.25万 - 项目类别:
University Undergraduate Student Research Awards
GSA Penrose Conference: PRF2022 Progressive Failure of Brittle Rocks; Western North Carolina; June 2022
GSA 彭罗斯会议:PRF2022 脆性岩石的渐进破坏;
- 批准号:
2134366 - 财政年份:2021
- 资助金额:
$ 10.25万 - 项目类别:
Standard Grant
The Moore-Penrose generalized inverse of linear relations
线性关系的摩尔-彭罗斯广义逆
- 批准号:
527134-2018 - 财政年份:2018
- 资助金额:
$ 10.25万 - 项目类别:
University Undergraduate Student Research Awards
GSA Penrose Conference on Layered Mafic Intrusions an Associated Economic Deposits
GSA 彭罗斯层状镁铁质侵入及相关经济矿床会议
- 批准号:
1621858 - 财政年份:2016
- 资助金额:
$ 10.25万 - 项目类别:
Standard Grant
Penrose transform for indefinite Grassmannian manifolds
不定格拉斯曼流形的彭罗斯变换
- 批准号:
16K05122 - 财政年份:2016
- 资助金额:
$ 10.25万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Time Flat Curves and Surfaces, Geometric Flows, and the Penrose Conjecture
时间平坦曲线和曲面、几何流和彭罗斯猜想
- 批准号:
1406396 - 财政年份:2014
- 资助金额:
$ 10.25万 - 项目类别:
Standard Grant
The Positive Mass Theorem and the Riemannian Penrose Inequality in Asymptotically Hyperbolic Manifolds
渐近双曲流形中的正质量定理和黎曼彭罗斯不等式
- 批准号:
464662-2014 - 财政年份:2014
- 资助金额:
$ 10.25万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's