Spectral Properties of Large Random Matrices
大型随机矩阵的谱特性
基本信息
- 批准号:0707145
- 负责人:
- 金额:$ 14万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-08-01 至 2010-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The principal investigator works on problems in Random Matrix Theory and Probability Theory with the main emphasis on statistical properties of the eigenvalues of large random matrices. The P.I. intends to continue his studies of the distribution of the largest eigenvalues in Wigner, sample covariance, and related ensembles of random matrices. The proposed research is closely related to the Tracy-Widom distribution of the largest eigenvalues of Hermitian and real symmetric random matrices that appears in many important problems in physics, statistics, and theoretical computer science: crystal shapes, exclusion processes, directed polimers in random media, principal component analysis. In particular, the P.I. proposes to establish Tracy-Widom distribution in some important ensembles of random matrices. Recently, the P.I. discovered Poisson statistics of the largest eigenvalues in random matrices with power-law tailed elements. Remarkably, such matrices very often appear in financial applications. The P.I. intends to continue his studies of heavy-tailed random matrices and, in particular, to study in detail the transition form the Tracy-Widom regime to the Poisson regime. The random matrix models studied in the project come from or have applications in nuclear physics (statistics of energy levels of heavy nuclei), mathematical statistics (principal component analysis), theoretical computer science (computational complexity, statistical analysis of errors, linear numerical algorithms), population biology, mathematical finance, and solid state physics (modeling transport properties of small metallic particles and quantum dots). The importance of the field has increased significantly in the last ten years as many different areas of mathematics and physics including combinatorics, representation theory, number theory, quantum gravity, integrable systems, and random growth models have been shown to possess deep and fruitful connections to random matrix theory.
主要研究随机矩阵理论和概率论中的问题,主要侧重于大型随机矩阵特征值的统计特性。 私家侦探打算继续他的研究分布的最大特征值的维格纳,样本协方差,以及相关的合奏随机矩阵。建议的研究是密切相关的Tracy-Widom分布的最大特征值的厄米特和真实的对称随机矩阵,出现在许多重要的问题,在物理学,统计学和理论计算机科学:晶体形状,排斥过程,定向聚合物在随机介质中,主成分分析。 特别是,P.I.提出在一些重要的随机矩阵集合中建立Tracy-Widom分布。 最近,PI发现了具有幂律尾元素的随机矩阵的最大特征值的泊松统计。值得注意的是,这种矩阵经常出现在金融应用中。 私家侦探打算继续他的研究重尾随机矩阵,特别是,研究详细的过渡形式的特雷西Widom制度的泊松制度。该项目研究的随机矩阵模型来自或应用于核物理(重核能级统计),数理统计(主成分分析),理论计算机科学(计算复杂性,误差统计分析,线性数值算法),人口生物学,数学金融学和固态物理学(模拟小金属粒子和量子点的传输特性)。 该领域的重要性在过去十年中显着增加,因为数学和物理学的许多不同领域,包括组合学,表示论,数论,量子引力,可积系统和随机增长模型已被证明与随机矩阵理论有着深刻而富有成效的联系。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexander Soshnikov其他文献
Alexander Soshnikov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alexander Soshnikov', 18)}}的其他基金
Participant Support for Advanced School/Workshop on Random Matrices and Growth Models
随机矩阵和增长模型高级学校/研讨会的参与者支持
- 批准号:
1301746 - 财政年份:2013
- 资助金额:
$ 14万 - 项目类别:
Standard Grant
Large Random Matrices and Random Point Processes
大型随机矩阵和随机点过程
- 批准号:
0405864 - 财政年份:2004
- 资助金额:
$ 14万 - 项目类别:
Standard Grant
Large Random Matrices and Determinantal Random Point Fields
大型随机矩阵和行列式随机点域
- 批准号:
0103948 - 财政年份:2001
- 资助金额:
$ 14万 - 项目类别:
Standard Grant
相似海外基金
A Tableau-based Approach to Model Checking Temporal Properties for Large-scale Systems
基于 Tableau 的大型系统时态属性模型检查方法
- 批准号:
23K19959 - 财政年份:2023
- 资助金额:
$ 14万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Development of Remote Sensing Approaches for Large-Scale Monitoring of Lake Ice Phenology and Properties
大规模监测湖泊冰物候和特性的遥感方法的发展
- 批准号:
555781-2020 - 财政年份:2022
- 资助金额:
$ 14万 - 项目类别:
Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
Development of Remote Sensing Approaches for Large-Scale Monitoring of Lake Ice Phenology and Properties
大规模监测湖泊冰物候和特性的遥感方法的发展
- 批准号:
555781-2020 - 财政年份:2021
- 资助金额:
$ 14万 - 项目类别:
Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
Collaborative Research: Controlling the Microstructure for Improved Mechanical Properties of Large-scale Polymer Composite Structures Made by Big Area Additive Manufacturing
合作研究:控制微观结构以改善大面积增材制造制成的大型聚合物复合结构的机械性能
- 批准号:
2055529 - 财政年份:2021
- 资助金额:
$ 14万 - 项目类别:
Standard Grant
Collaborative Research: Controlling the Microstructure for Improved Mechanical Properties of Large-scale Polymer Composite Structures Made by Big Area Additive Manufacturing
合作研究:控制微观结构以改善大面积增材制造制成的大型聚合物复合结构的机械性能
- 批准号:
2055628 - 财政年份:2021
- 资助金额:
$ 14万 - 项目类别:
Standard Grant
Subgrid-Scale Modeling for Large Eddy Simulation of Soot Evolution in Turbulent Reacting Multiphase Flows to Account for Sensitivity to Fuel Composition and Properties
用于湍流反应多相流中烟灰演化的大涡模拟的亚网格尺度建模,以考虑对燃料成分和性能的敏感性
- 批准号:
517037-2018 - 财政年份:2020
- 资助金额:
$ 14万 - 项目类别:
Postgraduate Scholarships - Doctoral
Clarification of shear mechanism and vibration properties of large timber joints
阐明大型木节点的剪切机理和振动特性
- 批准号:
20K06157 - 财政年份:2020
- 资助金额:
$ 14万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of Remote Sensing Approaches for Large-Scale Monitoring of Lake Ice Phenology and Properties
大规模监测湖泊冰物候和特性的遥感方法的发展
- 批准号:
555781-2020 - 财政年份:2020
- 资助金额:
$ 14万 - 项目类别:
Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
Modelling the mechanical properties of interface structured multi-layer composites under large deformations
模拟大变形下界面结构多层复合材料的力学性能
- 批准号:
449062206 - 财政年份:2020
- 资助金额:
$ 14万 - 项目类别:
Research Grants
Development of the large-scale silicon tracker for precision measurement of Higgs boson properties at HL-LHC
开发用于在 HL-LHC 上精确测量希格斯玻色子特性的大型硅跟踪器
- 批准号:
20K22346 - 财政年份:2020
- 资助金额:
$ 14万 - 项目类别:
Grant-in-Aid for Research Activity Start-up