Large Random Matrices

大型随机矩阵

基本信息

  • 批准号:
    1007558
  • 负责人:
  • 金额:
    $ 19.23万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-07-01 至 2013-06-30
  • 项目状态:
    已结题

项目摘要

The P.I. will work on problems in Random Matrix Theory and Probability Theory. The main emphasis of the research is on statistical properties of eigenvalues and eigenvectors of large random matrices. In particular, the P.I. intends to study the distribution of the largest eigenvalues in Wigner, sample covariance, and related ensembles of random matrices. The P.I. proposes to establish local universality results for a sufficiently wide class of such random matrices. In addition to employing the method of moments, the P.I. has been recently developing the resolvent method that allows one to establish the system of recursive relations for local linear statistics of the eigenvalues. Also, the P.I. will work with his Ph.D. students Sean O'Rourke, Pierre Dueck, and David Renfrew on the Gaussian fluctuation of the eigenvalues in the bulk of the spectrum and on the spectral properties of the deformed Wigner ensembles of random matrices.Over the last few decades, Random Matrix Theory has become one of the most exciting areas of mathematics and theoretical physics with applications ranging from Quantum Mechanics (statistical properties of highly excited energy levels of heavy nuclei), Theoretical Computer Science (computational complexity, statistical analysis of errors, linear numerical algorithms), Mathematical Finance, and Biology. To indicate the breadth of applications of Random Matrix Theory techniques, it can be commented that recent works of the P.I. have been cited by such diverse groups of researchers as faculty members of Harvard Medical School working in Population Biology and experts from the Capital Fund Management group (France) working in Financial Mathematics. In addition, Random Matrix Theory has deep connections to many areas of modern Mathematics, including the famous Riemann hypothesis about the distribution of the zeros of the Riemann zeta-function.
私家侦探将工作在随机矩阵理论和概率论的问题。研究的重点是大型随机矩阵特征值和特征向量的统计性质。特别是,P.I.打算研究维格纳最大特征值的分布,样本协方差,以及相关的随机矩阵的合奏。私家侦探建议建立一个足够广泛的一类这样的随机矩阵的地方普遍性的结果。 除了采用矩量法外,P.I.最近发展了一种预解式方法,该方法允许建立特征值的局部线性统计的递归关系系统。 还有私家侦探他的博士学位学生Sean O'Rourke,Pierre Dueck和大卫伦弗鲁在大部分频谱中本征值的高斯波动和随机矩阵的变形维格纳系综的频谱特性上。在过去的几十年里,随机矩阵理论已经成为数学和理论物理中最令人兴奋的领域之一,其应用范围从量子力学到量子力学,(重核高激发能级的统计特性),理论计算机科学(计算复杂性,误差统计分析,线性数值算法),数学金融和生物学。为了表明随机矩阵理论技术应用的广度,可以评论P.I.被各种各样的研究人员引用,如哈佛医学院从事人口生物学研究的教员和资本基金管理集团(法国)从事金融数学研究的专家。 此外,随机矩阵理论与现代数学的许多领域有着深刻的联系,包括关于黎曼zeta函数零点分布的著名黎曼假设。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alexander Soshnikov其他文献

Alexander Soshnikov的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alexander Soshnikov', 18)}}的其他基金

Participant Support for Advanced School/Workshop on Random Matrices and Growth Models
随机矩阵和增长模型高级学校/研讨会的参与者支持
  • 批准号:
    1301746
  • 财政年份:
    2013
  • 资助金额:
    $ 19.23万
  • 项目类别:
    Standard Grant
Spectral Properties of Large Random Matrices
大型随机矩阵的谱特性
  • 批准号:
    0707145
  • 财政年份:
    2007
  • 资助金额:
    $ 19.23万
  • 项目类别:
    Standard Grant
Large Random Matrices and Random Point Processes
大型随机矩阵和随机点过程
  • 批准号:
    0405864
  • 财政年份:
    2004
  • 资助金额:
    $ 19.23万
  • 项目类别:
    Standard Grant
Large Random Matrices and Determinantal Random Point Fields
大型随机矩阵和行列式随机点域
  • 批准号:
    0103948
  • 财政年份:
    2001
  • 资助金额:
    $ 19.23万
  • 项目类别:
    Standard Grant

相似海外基金

Large Deviations and Extremes for Random Matrices, Tensors, and Fields
随机矩阵、张量和场的大偏差和极值
  • 批准号:
    2154029
  • 财政年份:
    2022
  • 资助金额:
    $ 19.23万
  • 项目类别:
    Standard Grant
Eigenvectors of Large-Dimensional Random Matrices and Graphs
大维随机矩阵和图的特征向量
  • 批准号:
    1810500
  • 财政年份:
    2018
  • 资助金额:
    $ 19.23万
  • 项目类别:
    Standard Grant
Model selection and machine learning theory via large-scale random matrices
通过大规模随机矩阵的模型选择和机器学习理论
  • 批准号:
    20700258
  • 财政年份:
    2008
  • 资助金额:
    $ 19.23万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Spectral Properties of Large Random Matrices
大型随机矩阵的谱特性
  • 批准号:
    0707145
  • 财政年份:
    2007
  • 资助金额:
    $ 19.23万
  • 项目类别:
    Standard Grant
Large Random Matrices and Random Point Processes
大型随机矩阵和随机点过程
  • 批准号:
    0405864
  • 财政年份:
    2004
  • 资助金额:
    $ 19.23万
  • 项目类别:
    Standard Grant
Large Random Matrices and Determinantal Random Point Fields
大型随机矩阵和行列式随机点域
  • 批准号:
    0103948
  • 财政年份:
    2001
  • 资助金额:
    $ 19.23万
  • 项目类别:
    Standard Grant
Spectral Behavior of Two Classes of Large Dimensional Random Matrices
两类大维随机矩阵的谱行为
  • 批准号:
    9703591
  • 财政年份:
    1997
  • 资助金额:
    $ 19.23万
  • 项目类别:
    Continuing Grant
Spectral Theory of Large Dimensional Random Matrices and Its Applications
大维随机矩阵谱理论及其应用
  • 批准号:
    9408799
  • 财政年份:
    1994
  • 资助金额:
    $ 19.23万
  • 项目类别:
    Continuing Grant
Spectral Theory of Large Dimensional Random Matrices and Its Applications
大维随机矩阵谱理论及其应用
  • 批准号:
    9404047
  • 财政年份:
    1994
  • 资助金额:
    $ 19.23万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: The Spectral Behavior of Large Dimensional Random Matrices Applied to Signal Processing
数学科学:应用于信号处理的大维随机矩阵的谱行为
  • 批准号:
    8903072
  • 财政年份:
    1989
  • 资助金额:
    $ 19.23万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了