Analysis of Optimal Controls for Biomedical Models of Cancer and HIV
癌症和艾滋病毒生物医学模型的最佳控制分析
基本信息
- 批准号:0205093
- 负责人:
- 金额:$ 10.17万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2002
- 资助国家:美国
- 起止时间:2002-07-01 至 2005-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
0205093LedzewiczIn the project, optimal control problems will be investigated which arise as mathematical models for biomedical systems in the chemotherapy of diseases which have a strong cell proliferation aspect such as cancer or AIDS. Three directions of research will be pursued: the analysis of models in cancer chemotherapy, an analysis of models for HIV-infection and anti-viral treatment of AIDS, and the design and analysis of a general mathematical framework which combines common features of both cancer and HIV models. The investigators will use their previous experience working on cancer chemotherapy models and apply new tools based on the method of characteristics and high-order conditions for optimality. In compartmental models for cancer chemotherapy the cell-cycle is controlled by clustering its phases into compartments and using phase specific cytostatic killing and blocking agents. The goal is to maximize the number of cancer cells that the cytostatic agent in the drug kills while keeping the toxicity to the normal tissue acceptable. In this project a synthesis of optimal controls for these models will be constructed. Furthermore, more complex mathematical models that take into account additional aspects such as evolving drug resistance or bone marrow destruction will be analyzed. Due to the complexity of HIV infection, mathematical models for AIDS have only recently been developed and still are constantly being revised and updated taking new medical data into account. With the main attention so far given to the form of the dynamics that best models the interactions between the virus and the human immune system under drug treatment, many of these models still have not been formulated as optimal control problems. The investigators will analyze a variety of these models in the framework of optimal control and compare the solutions aiming at a design of optimal treatment protocols.In the project, the investigators will consider mathematical models in the chemotherapy of diseases that have a strong cell proliferation aspect such a cancer or AIDS. These models will be analyzed as optimal control problems with the drug dosage serving as control parameter with the goal of maximizing the number of cancer cells killed by the drug in the case of cancer (respectively maximizing the number of uninfected cells in the case of chemotherapy for AIDS) while minimizing the harmful side effects and cost of the chemotherapy. Although individually these problems are very different in their specifics, they also have many aspects in common and can be put into one general mathematical model that encompasses them all. Thus, while on one side there is a need to consider these problems separately to understand the implications for the underlying disease, on the other side there are simplifications and insights to be gained by looking at the general properties common to these models. This project will address both directions. A biomedical interpretation of the conditions that optimal controls satisfy will be given in terms understandable by biomedical personnel and the conditions will be related to the underlying biological situation. It is expected that the outcomes of this project will be of interest to the medical community by giving some insights into the analysis of existing chemotherapy protocols for cancer or HIV and possibly aid in the design of new improved protocols. These results are particularly important for HIV treatments which so far do not cure the disease, but only provide a long-term maintenance program.
0205093Ledzewicz 在该项目中,将研究最优控制问题,这些问题作为生物医学系统的数学模型出现在具有强烈细胞增殖方面的疾病(例如癌症或艾滋病)的化疗中。将进行三个研究方向:癌症化疗模型分析、艾滋病毒感染和艾滋病抗病毒治疗模型分析以及结合癌症和艾滋病毒模型共同特征的通用数学框架的设计和分析。研究人员将利用他们之前在癌症化疗模型方面的经验,并应用基于特征和高阶条件方法的新工具来实现最优性。在癌症化疗的区室模型中,细胞周期是通过将其阶段聚集到区室中并使用阶段特异性细胞抑制杀伤剂和阻断剂来控制的。目标是最大限度地增加药物中细胞抑制剂杀死的癌细胞数量,同时保持对正常组织的毒性可接受。在该项目中,将为这些模型构建最优控制的综合。此外,还将分析更复杂的数学模型,这些模型考虑了诸如不断变化的耐药性或骨髓破坏等其他方面。由于艾滋病毒感染的复杂性,艾滋病的数学模型直到最近才被开发出来,并且仍在不断地根据新的医学数据进行修订和更新。迄今为止,人们主要关注最能模拟药物治疗下病毒与人体免疫系统之间相互作用的动力学形式,但许多模型仍未被表述为最优控制问题。研究人员将在最佳控制的框架内分析各种此类模型,并比较旨在设计最佳治疗方案的解决方案。 在该项目中,研究人员将考虑癌症或艾滋病等细胞增殖旺盛的疾病化疗中的数学模型。这些模型将被分析为最优控制问题,以药物剂量作为控制参数,目标是在癌症情况下最大化药物杀死的癌细胞数量(在艾滋病化疗情况下分别最大化未感染细胞的数量),同时最小化化疗的有害副作用和成本。尽管这些问题各自的具体情况各不相同,但它们也有许多共同点,可以放入一个涵盖所有问题的通用数学模型中。因此,一方面需要单独考虑这些问题,以了解对潜在疾病的影响,另一方面,通过研究这些模型共有的一般特性,可以得到简化和见解。该项目将涉及两个方向。最佳控制所满足的条件的生物医学解释将以生物医学人员可以理解的方式给出,并且这些条件将与潜在的生物学情况相关。预计该项目的结果将引起医学界的兴趣,因为它可以对现有癌症或艾滋病毒化疗方案的分析提供一些见解,并可能有助于设计新的改进方案。这些结果对于艾滋病毒治疗尤其重要,迄今为止,艾滋病毒治疗并不能治愈这种疾病,而只能提供长期维持计划。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Urszula Ledzewicz其他文献
Optimal Control for a Mathematical Model of Glioma Treatment with Oncolytic Therapy and TNF- $$\alpha $$ Inhibitors
- DOI:
10.1007/s10957-018-1218-4 - 发表时间:
2018-01-18 - 期刊:
- 影响因子:1.500
- 作者:
Elzbieta Ratajczyk;Urszula Ledzewicz;Heinz Schättler - 通讯作者:
Heinz Schättler
The extremum principle for some types of distributed parameter control systems
某些类型的分布式参数控制系统的极值原理
- DOI:
10.1080/00036819308840146 - 发表时间:
1993 - 期刊:
- 影响因子:1.1
- 作者:
Urszula Ledzewicz - 通讯作者:
Urszula Ledzewicz
Invited Speakers
特邀演讲嘉宾
- DOI:
- 发表时间:
2003 - 期刊:
- 影响因子:0
- 作者:
Sérgio Dias;Antonio Fasano;Alberto Gandolfi;John King;Urszula Ledzewicz;José Carlos Machado;Alberto d’Onofrio;Luigi Preziosi;Vito Quaranta;Anne M. Robertson;Cláudia Lobato da Silva;em att.utl.p;A. Sequeira;Cemat Ist;A. Gambaruto;J. Janela;João Silva Soares - 通讯作者:
João Silva Soares
Introduction to the special collection in honor of Avner Friedman
- DOI:
10.1007/s00285-022-01864-7 - 发表时间:
2023-01-25 - 期刊:
- 影响因子:2.300
- 作者:
Hans Othmer;Yuan Lou;Philip Maini;Urszula Ledzewicz - 通讯作者:
Urszula Ledzewicz
Urszula Ledzewicz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Urszula Ledzewicz', 18)}}的其他基金
US-Poland International Workshop: Micro and Macro Systems in the Life Sciences, Polish Academy of Sciences, Bedlewo, Poland, June 8-13, 2015
美国-波兰国际研讨会:生命科学中的微观和宏观系统,波兰科学院,波兰贝德勒沃,2015 年 6 月 8-13 日
- 批准号:
1456767 - 财政年份:2015
- 资助金额:
$ 10.17万 - 项目类别:
Standard Grant
RUI: Collaborative Research: Regular Synthesis for Multi-input Optimal Control Problems with Applications to Biomedicine
RUI:协作研究:多输入最优控制问题的常规综合及其在生物医学中的应用
- 批准号:
1311733 - 财政年份:2013
- 资助金额:
$ 10.17万 - 项目类别:
Standard Grant
US-South Africa Workshop: Mathematical Methods in Systems Biology and Population Dynamics, AIMS, Cape Town, South Africa
美国-南非研讨会:系统生物学和种群动态中的数学方法,AIMS,南非开普敦
- 批准号:
1135667 - 财政年份:2011
- 资助金额:
$ 10.17万 - 项目类别:
Standard Grant
RUI: Collaborative Research: Optimal Control of Multi-Input Mathematical Models for Tumor Dynamics under Combination Therapies
RUI:合作研究:联合治疗下肿瘤动力学多输入数学模型的优化控制
- 批准号:
1008221 - 财政年份:2010
- 资助金额:
$ 10.17万 - 项目类别:
Standard Grant
US-Israel Workshop: Mathematical Methods in Systems Biology, Tel Aviv, Israel, January 4-7, 2010
美国-以色列研讨会:系统生物学中的数学方法,以色列特拉维夫,2010 年 1 月 4-7 日
- 批准号:
0929596 - 财政年份:2009
- 资助金额:
$ 10.17万 - 项目类别:
Standard Grant
Collaborative Research: (RUI) Analysis of Optimal and Suboptimal Controls for Mathematical Models Arising in Novel Cancer Therapies
合作研究:(RUI)新型癌症疗法中出现的数学模型的最佳和次优控制分析
- 批准号:
0707404 - 财政年份:2007
- 资助金额:
$ 10.17万 - 项目类别:
Standard Grant
RUI: Collaborative Research: Optimal Control of Mathematical Models for Cancer Treatments
RUI:合作研究:癌症治疗数学模型的优化控制
- 批准号:
0405827 - 财政年份:2004
- 资助金额:
$ 10.17万 - 项目类别:
Standard Grant
RUI: Synthesis in Applications of Optimal Control
RUI:最优控制应用综合
- 批准号:
9971747 - 财政年份:1999
- 资助金额:
$ 10.17万 - 项目类别:
Standard Grant
Mathematical Sciences: Abnormal Minimizers and Discontinuous Value Functions in Optimal Control
数学科学:最优控制中的异常极小化器和不连续值函数
- 批准号:
9622967 - 财政年份:1996
- 资助金额:
$ 10.17万 - 项目类别:
Standard Grant
Mathematical Sciences: Abnormality in Optimization and Optimal Control Problems
数学科学:最优化和最优控制问题中的异常
- 批准号:
9109324 - 财政年份:1991
- 资助金额:
$ 10.17万 - 项目类别:
Standard Grant
相似海外基金
Several Problems of Stochastic Optimal Controls in Infinite Time Horizon
无限时间范围内随机最优控制的几个问题
- 批准号:
2305475 - 财政年份:2023
- 资助金额:
$ 10.17万 - 项目类别:
Standard Grant
Sustainable Optimal Controls for Nonlinear Partial Differential Equations with Applications
非线性偏微分方程的可持续最优控制及其应用
- 批准号:
405372818 - 财政年份:2019
- 资助金额:
$ 10.17万 - 项目类别:
Research Grants
Collaborative Research: (RUI) Analysis of Optimal and Suboptimal Controls for Mathematical Models Arising in Novel Cancer Therapies
合作研究:(RUI)新型癌症疗法中出现的数学模型的最佳和次优控制分析
- 批准号:
0707404 - 财政年份:2007
- 资助金额:
$ 10.17万 - 项目类别:
Standard Grant
Collaborative Research: Analysis of Optimal and Suboptimal Controls for Mathematical Models Arising in Novel Cancer Therapies
合作研究:新型癌症疗法中数学模型的最优和次优控制分析
- 批准号:
0707410 - 财政年份:2007
- 资助金额:
$ 10.17万 - 项目类别:
Standard Grant
Optimal selection of controls in nested case-control studies
巢式病例对照研究中对照的最佳选择
- 批准号:
17500183 - 财政年份:2005
- 资助金额:
$ 10.17万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study on Optimal Controls and Differential Games via the Viscosity Solution Theory
基于粘性解理论的最优控制与微分博弈研究
- 批准号:
12640103 - 财政年份:2000
- 资助金额:
$ 10.17万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Mathematical Sciences: Existence and Computation of Optimal Markov Controls for Adaptive Control Problems
数学科学:自适应控制问题的最优马尔可夫控制的存在性和计算
- 批准号:
9404990 - 财政年份:1994
- 资助金额:
$ 10.17万 - 项目类别:
Continuing Grant
The theory of coupled points for optimal controls with general boundary conditions
一般边界条件下最优控制的耦合点理论
- 批准号:
39466-1989 - 财政年份:1991
- 资助金额:
$ 10.17万 - 项目类别:
Discovery Grants Program - Individual
Mathematical Sciences: Computations of Optimal Boundary Controls and Designs for Distributed Systems in Optics and Elasticity
数学科学:光学和弹性分布式系统的最优边界控制计算和设计
- 批准号:
8718510 - 财政年份:1987
- 资助金额:
$ 10.17万 - 项目类别:
Standard Grant
The Behavior of Iterative Minimizing Schemes Near Singular And Nonsingular Optimal Controls
奇异和非奇异最优控制附近的迭代最小化方案的行为
- 批准号:
8005958 - 财政年份:1980
- 资助金额:
$ 10.17万 - 项目类别:
Continuing Grant














{{item.name}}会员




