Collaborative Research: Analytical Study of Certain Turbulence and Large--scale Geophysical Models

合作研究:某些湍流和大尺度地球物理模型的分析研究

基本信息

  • 批准号:
    0709228
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-09-01 至 2011-08-31
  • 项目状态:
    已结题

项目摘要

Reliable long time numerical simulations of the exact equations that govern the climate dynamics are still out of reach, even for the most powerful state-of-the-art computers. This is because of the wide range of spatial and time scales involved in the dynamics of these models. Taking advantage of the shallowness of the atmosphere and the oceans, as well as the rotation of the earth, geophysicists have introduced more simplified models - the so-called primitive equations and their variance - to be implemented in the simulations of global climate models. This project is to justify rigorously some of these simplified models, and to prove existence, uniqueness and continuous dependence on the initial data of their solutions; and to investigate the long-term behavior for these models. This is the first and the most crucial step in justifying the derivation of these models and their consistency with physical observations for the relevant spatial and time scales. This project involves the development of novel and sophisticated mathematical techniques for the analytical study of these models and of new sub-grid scale models of oceanic turbulent flows. The latter are being proposed as new analytical parametrization models for ocean circulation dynamics. Furthermore, we propose to investigate the qualitative and statistical approximation behavior of a new class of inviscid regularizing schemes/models for oceanic and atmospheric dynamics, and to implement them computationally. The advantage of these new schemes, which are globally (in time) regular, is that they do not require addition boundary conditions, unlike the standard hyper-viscous regularization, which is commonly used in geophysical computations to suppress the numerical, non-physical, small scale instabilities.Due to the developments in modern technology, the ever increasing computational power, and the sophisticated mathematical analysis of the ocean and atmosphere dynamics models we are able predict the weather only for a few days. Reliable long time numerical simulations of the exact equations that govern the climate dynamics are still out of reach, even for the most powerful state-of-the-art computers. Geophysicists have introduced more simplified models for climate dynamics to be implemented computationally. It is therefore essential to justify, rigorously, the validity of these models. Development of computational and theoretical tools to further understanding of the climate system and its predictability will be the major focus of this project. The approach of this project involves a combination of mathematical, numerical and statistical tools.
即使是最强大的最先进的计算机,对控制气候动态的精确方程进行可靠的长时间数值模拟仍然遥不可及。这是因为这些模型的动态涉及广泛的空间和时间尺度。利用大气层和海洋的浅度以及地球的自转,气候学家引入了更简化的模型--所谓的原始方程及其方差--用于全球气候模型的模拟。本项目将严格证明其中一些简化模型,并证明其解的存在性、唯一性和对初始数据的连续依赖性;并研究这些模型的长期行为。这是证明这些模型的推导及其与相关空间和时间尺度的物理观测一致性的第一步,也是最关键的一步。该项目涉及开发新颖和复杂的数学技术,用于分析研究这些模型和新的海洋湍流次网格尺度模型。后者被提议作为海洋环流动力学的新的参数化分析模式。此外,我们建议研究一类新的海洋和大气动力学的无粘正则化方案/模型的定性和统计近似行为,并计算实现它们。这些新格式具有全局(时间)正则性,其优点是不需要附加边界条件,而标准的超粘性正则化常用于地球物理计算中以抑制数值的、非物理的、小尺度的不稳定性。以及对海洋和大气动力学模型的复杂数学分析,我们只能预测几天的天气。即使是最强大的最先进的计算机,对控制气候动态的精确方程进行可靠的长时间数值模拟仍然遥不可及。地球物理学家已经引入了更简化的气候动力学模型,以便通过计算实现。因此,必须严格证明这些模型的有效性。开发计算和理论工具,以进一步了解气候系统及其可预测性将是该项目的主要重点。该项目的方法涉及数学,数值和统计工具的组合。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Chongsheng Cao其他文献

Analytic approaches to the Mobius energy: History and recent topics
莫比乌斯能量的分析方法:历史和最新主题
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chongsheng Cao;Slim Ibrahim;Kenji Nakanishi;Edriss S. Titi;津川 光太郎;長澤 壯之
  • 通讯作者:
    長澤 壯之
Small global solutions to the damped two-dimensional Boussinesq equations
阻尼二维 Boussinesq 方程的小全局解
  • DOI:
    10.1016/j.jde.2014.02.012
  • 发表时间:
    2013-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Dhanapati Adhikari;Chongsheng Cao;Jiahong Wu;许孝精
  • 通讯作者:
    许孝精
Stability of 3D perturbations to 2D Navier–Stokes flows with vertical dissipation
具有垂直耗散的二维纳维-斯托克斯流的三维扰动的稳定性
  • DOI:
    10.1016/j.aml.2025.109634
  • 发表时间:
    2025-12-01
  • 期刊:
  • 影响因子:
    2.800
  • 作者:
    Chongsheng Cao;Jiahong Wu
  • 通讯作者:
    Jiahong Wu
Traveling Wave Solutions for a Class of One-Dimensional Nonlinear Shallow Water Wave Models

Chongsheng Cao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Chongsheng Cao', 18)}}的其他基金

Collaborative Research: Mathematical Analysis of Certain Geophysical and Fluid Dynamics Models
合作研究:某些地球物理和流体动力学模型的数学分析
  • 批准号:
    1109022
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: SaTC: CORE: Small: Analytical Models for Conversational Social Engineering Attacks
协作研究:SaTC:核心:小型:对话式社会工程攻击的分析模型
  • 批准号:
    2319802
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Small: Analytical Models for Conversational Social Engineering Attacks
协作研究:SaTC:核心:小型:对话式社会工程攻击的分析模型
  • 批准号:
    2319803
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Updating iVirus - the CyVerse-powered analytical toolkit for viruses of microbes
协作研究:更新 iVirus - CyVerse 支持的微生物病毒分析工具包
  • 批准号:
    2149505
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Collaborative Research: Deciphering complex phenotypes in bacteria aided by continuous genome shuffling and high throughput analytical technologies
合作研究:借助连续基因组改组和高通量分析技术破译细菌中的复杂表型
  • 批准号:
    2114188
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Deciphering complex phenotypes in bacteria aided by continuous genome shuffling and high throughput analytical technologies
合作研究:借助连续基因组改组和高通量分析技术破译细菌中的复杂表型
  • 批准号:
    2114203
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Updating iVirus - the CyVerse-powered analytical toolkit for viruses of microbes
协作研究:更新 iVirus - CyVerse 支持的微生物病毒分析工具包
  • 批准号:
    2149506
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Collaborative Research: Surface Analytical Investigation on Stability of Organometal Trihalide Perovskite
合作研究:有机金属三卤化物钙钛矿稳定性的表面分析研究
  • 批准号:
    1903962
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
RIDIR: Collaborative Research: Bayesian analytical tools to improve survey estimates for subpopulations and small areas
RIDIR:协作研究:贝叶斯分析工具,用于改进亚人群和小区域的调查估计
  • 批准号:
    1926424
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
RIDIR: Collaborative Research: Bayesian analytical tools to improve survey estimates for subpopulations and small areas
RIDIR:协作研究:贝叶斯分析工具,用于改进亚人群和小区域的调查估计
  • 批准号:
    1926578
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Surface analytical investigation on stability of organometal trihalide perovskite
合作研究:有机金属三卤化物钙钛矿稳定性的表面分析研究
  • 批准号:
    1903981
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了