Construction of Complete Embedded Self-Similar Surfaces under Mean Curvature Flow

平均曲率流下完全嵌入自相似曲面的构造

基本信息

  • 批准号:
    0710701
  • 负责人:
  • 金额:
    $ 4.27万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-07-01 至 2008-12-31
  • 项目状态:
    已结题

项目摘要

The main goal of the project is the construction of new examples of complete embedded self-similar surfaces under the mean curvature flow, which is the gradient flow of the surface area. The strategy for the construction is to desingularize the intersection of two known examples by adapting the method N. Kapouleas used to construct embedded minimal surfaces; the Principal Investigator will use a Scherk's singly periodic minimal surface to get an approximate solution which is then perturbed to obtain a complete self-similar surface. The project is very geometric in nature, but it involves many techniques from nonlinear partial differential equations. Self-similar surfaces model the behavior of the mean curvature flow near singularities under certain conditions; therefore, the availability of examples of such surfaces is important to the understanding of the flow near its singularities and its continuation past the singularities. Unfortunately, there are currently only four know examples of complete self-similar surfaces in dimension two embedded in the Euclidean space. A general classification is hopeless; therefore, it is essential to find successful methods to construct new examples. The broader goal of this project is to obtain a better understanding of the formation of singularities for the mean curvature flow.
该项目的主要目标是在平均曲率流下构造完全嵌入的自相似曲面的新实例,该平均曲率流是表面积的梯度流。构造的策略是通过采用N.Kapouleas构造嵌入极小曲面的方法来去奇化两个已知例子的交点;主要研究者将使用Scherk的单周期极小曲面来获得近似解,然后对其进行扰动以获得完整的自相似曲面。该项目本质上是非常几何的,但它涉及到许多来自非线性偏微分方程组的技术。自相似曲面模拟了奇点附近的平均曲率流在一定条件下的行为;因此,这种曲面的例子的可用性对于理解奇点附近的流动以及它在奇点之后的延续是重要的。不幸的是,目前只有四个已知的二维完全自相似曲面嵌入到欧几里德空间中。一般的分类是没有希望的;因此,找到成功的方法来构建新的例子是至关重要的。这个项目的更广泛的目标是更好地理解平均曲率流奇点的形成。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xuan Hien Nguyen其他文献

The Vanishing of the Fundamental Gap of Convex Domains in $$\mathbb {H}^n$$
  • DOI:
    10.1007/s00023-021-01096-3
  • 发表时间:
    2021-09-13
  • 期刊:
  • 影响因子:
    1.300
  • 作者:
    Theodora Bourni;Julie Clutterbuck;Xuan Hien Nguyen;Alina Stancu;Guofang Wei;Valentina-Mira Wheeler
  • 通讯作者:
    Valentina-Mira Wheeler
Feasibility and Safety of Endoscopic Thyroidectomy Via a Unilateral Axillobreast Approach for Unilateral Benign Thyroid Tumor in Vietnam

Xuan Hien Nguyen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xuan Hien Nguyen', 18)}}的其他基金

Midwest Geometry Conference 2019-2021
中西部几何会议 2019-2021
  • 批准号:
    1855766
  • 财政年份:
    2019
  • 资助金额:
    $ 4.27万
  • 项目类别:
    Standard Grant
Construction of Complete Embedded Self-Similar Surfaces under Mean Curvature Flow
平均曲率流下完全嵌入自相似曲面的构造
  • 批准号:
    0908835
  • 财政年份:
    2008
  • 资助金额:
    $ 4.27万
  • 项目类别:
    Standard Grant

相似海外基金

Toward a more complete understanding of coastal upwelling dynamics
更全面地了解沿海上升流动力学
  • 批准号:
    2343008
  • 财政年份:
    2024
  • 资助金额:
    $ 4.27万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: Direct and Complete Characterization of Electronic Properties of Materials Under Pressure
RII Track-4:NSF:压力下材料电子特性的直接完整表征
  • 批准号:
    2327363
  • 财政年份:
    2024
  • 资助金额:
    $ 4.27万
  • 项目类别:
    Standard Grant
DryBrain: single cell-resolution molecular mechanisms ensuring tolerance of insect nervous system to complete desiccation
DryBrain:单细胞分辨率分子机制确保昆虫神经系统对完全干燥的耐受性
  • 批准号:
    23K26919
  • 财政年份:
    2024
  • 资助金额:
    $ 4.27万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
A complete double copy dictionary and its applications
完整的双副本词典及其应用
  • 批准号:
    2868821
  • 财政年份:
    2023
  • 资助金额:
    $ 4.27万
  • 项目类别:
    Studentship
Towards a complete characterization of the metastasis founder clones in colorectal cancer
全面表征结直肠癌转移起始克隆
  • 批准号:
    10973772
  • 财政年份:
    2023
  • 资助金额:
    $ 4.27万
  • 项目类别:
STTR Phase II: Stem Cell Delivery in Microscopic Hydrogel Droplets for Faster and More Complete Healing of Equine Tendon and Ligament Injuries
STTR 第二阶段:以微小水凝胶液滴形式输送干细胞,以更快、更完全地治愈马肌腱和韧带损伤
  • 批准号:
    2304324
  • 财政年份:
    2023
  • 资助金额:
    $ 4.27万
  • 项目类别:
    Cooperative Agreement
Complete inhibition of ROCK signaling in diabetic nephropathy
完全抑制糖尿病肾病中的 ROCK 信号传导
  • 批准号:
    23K07709
  • 财政年份:
    2023
  • 资助金额:
    $ 4.27万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of multi omics data analysis method using short/long read integration and complete human reference sequences
使用短/长读长集成和完整的人类参考序列开发多组学数据分析方法
  • 批准号:
    23K11300
  • 财政年份:
    2023
  • 资助金额:
    $ 4.27万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Delta-Complete SMT Solvers for Learning and Optimization Algorithms
用于学习和优化算法的 Delta-Complete SMT 求解器
  • 批准号:
    2869702
  • 财政年份:
    2023
  • 资助金额:
    $ 4.27万
  • 项目类别:
    Studentship
Challenges to the problem of elder-to-elder nursing care from a proposal for a complete unrestrained monitoring method of wheelchair operating mechanisms
轮椅操作机构完整无限制监测方法的提出对长者护理问题的挑战
  • 批准号:
    23K01928
  • 财政年份:
    2023
  • 资助金额:
    $ 4.27万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了