Computational Methods for Astrophysical Flows

天体物理流的计算方法

基本信息

  • 批准号:
    0711885
  • 负责人:
  • 金额:
    $ 15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-07-15 至 2011-12-31
  • 项目状态:
    已结题

项目摘要

Astrophysical fluid dynamics is a branch of physics concerned with understanding the evolution of far-away objects such as black holes and neutron stars. In order to fully understand such objects, mathematical models must incorporate general relativistic, electromagnetic, and fluid dynamic effects. The resulting equations are a large, coupled, nonlinear system of partial differential equations, some of which are evolution equations, while others are constraint equations that result from various gauge freedoms. The PI's research will focus on developing high-order schemes on unstructured grids to solve various simplified versions of the full astrophysical fluid dynamic model. For example, one problem of great interest to astrophysicists is that of mass accretion onto black holes and the resulting formation of relativistic jets; this phenomenon can be treated in the test-fluid limit (i.e., background spacetime metric is fixed). Another important problem is the generation of gravitational waves (i.e., ripples in spacetime) from the collision of two massive black holes; this problem can be first looked at in the minimally coupled scalar field limit. The PI will make use of both discontinuous Galerkin and residual distribution scheme methodologies to construct accurate and efficient schemes. In particular, these methods will be combined with adaptive mesh refinement strategies. In order to do this efficiently, the PI will construct a posteriori error estimators that can be used to dynamically diagnose where large numerical errors are being made. The resulting set of numerical methods will be incorporated into a computer code that will be made freely available on the web.Although astrophysical objects such as black hole accretion disks, extragalactic jets, and supernovae are observable using various telescopes, direct experimentation is clearly not possible. On the other hand, mathematical models that attempt to explain the physics of these objects are necessarily complex and must include gravitational, electromagnetic, and fluid dynamic effects. Exact solutions to the resulting mathematical equations can only be constructed in very special cases. Therefore, the ability to understand astrophysical phenomena from a scientific viewpoint rests largely on the ability to run accurate and efficient computer simulations, which, in turn, rests on the quality of the computational methods that are used to carry out those simulations. The PI's research is focused on developing classes of high-order computational methods for solving the equations of astrophysical fluid dynamics. One aspect of this work will involve the construction of various error indicators that can be used to dynamically diagnose and correct the accuracy of a computation. Another aspect will be to develop a software package that will be made freely available on the web. The computational methods that result from this development will be applied to two distinct problems in astrophysics: (1) the formation of astrophysical jets from black hole accretion processes and (2) the dynamics of the interaction of two black holes and the resulting generation of gravitational waves.
天体物理学流体动力学是物理学的一个分支,主要研究黑洞和中子星等遥远天体的演化。为了充分理解这些物体,数学模型必须包含广义相对论、电磁和流体动力学效应。由此产生的方程是一个大的,耦合的,非线性偏微分方程系统,其中一些是演化方程,而另一些是由各种规范自由度的约束方程。PI的研究将集中在开发非结构网格上的高阶格式,以解决完整天体物理流体动力学模型的各种简化版本。例如,天体物理学家非常感兴趣的一个问题是黑洞的质量吸积和由此形成的相对论喷流;这种现象可以在测试流体极限(即,背景时空度量是固定的)。另一个重要的问题是引力波的产生(即,时空中的涟漪)来自两个大质量黑洞的碰撞;这个问题可以首先在最小耦合标量场极限中进行研究。PI将利用不连续Galerkin和残差分布方案方法来构建准确有效的方案。特别是,这些方法将与自适应网格细化策略相结合。 为了有效地做到这一点,PI将构建一个后验误差估计,可用于动态诊断大的数值误差正在作出。由此产生的一套数值方法将被纳入计算机代码,并将在网上免费提供。虽然黑洞吸积盘、河外喷流和超新星等天体物理物体可以使用各种望远镜观测到,但直接实验显然是不可能的。另一方面,试图解释这些物体物理学的数学模型必然是复杂的,必须包括引力、电磁和流体动力学效应。由此产生的数学方程的精确解只能在非常特殊的情况下构造。因此,从科学角度理解天体物理现象的能力很大程度上取决于运行准确和高效的计算机模拟的能力,而这反过来又取决于用于执行这些模拟的计算方法的质量。PI的研究重点是开发高阶计算方法来求解天体物理流体动力学方程。这项工作的一个方面将涉及各种错误指示器,可用于动态诊断和校正计算的准确性的建设。另一个方面将是开发一个软件包,在网上免费提供。从这一发展中产生的计算方法将应用于天体物理学中的两个不同问题:(1)黑洞吸积过程中天体物理喷流的形成和(2)两个黑洞相互作用的动力学和由此产生的引力波。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

James Rossmanith其他文献

James Rossmanith的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('James Rossmanith', 18)}}的其他基金

Entropy-Consistent Moment-Closure Approximations of Kinetic Boltzmann Equations
动力学玻尔兹曼方程的熵一致矩闭合近似
  • 批准号:
    2012699
  • 财政年份:
    2020
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Micro-Macro Decomposition Numerical Schemes for Multiscale Simulation of Plasma
等离子体多尺度模拟的微观-宏观分解数值方案
  • 批准号:
    1620128
  • 财政年份:
    2016
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Discontinuous Galerkin Schemes for Fluid, Kinetic, and Multiscale Fluid/Kinetic Models in Plasma Physics Applications
等离子体物理应用中流体、动力学和多尺度流体/动力学模型的不连续伽辽金方案
  • 批准号:
    1419020
  • 财政年份:
    2014
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Space-time DG-FEMs for Fluid and Kinetic Plasma Models
用于流体和动力学等离子体模型的时空 DG-FEM
  • 批准号:
    1016202
  • 财政年份:
    2010
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Wave Propagation Methods for Astrophysical Flows
天体物理流的波传播方法
  • 批准号:
    0619037
  • 财政年份:
    2005
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Wave Propagation Methods for Astrophysical Flows
天体物理流的波传播方法
  • 批准号:
    0409972
  • 财政年份:
    2004
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant

相似国自然基金

Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: Arbitrary Order Structure-Preserving Discontinuous Galerkin Methods for Compressible Euler Equations With Self-Gravity in Astrophysical Flows
合作研究:天体物理流中自重力可压缩欧拉方程的任意阶结构保持不连续伽辽金方法
  • 批准号:
    2309591
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: Arbitrary Order Structure-Preserving Discontinuous Galerkin Methods for Compressible Euler Equations With Self-Gravity in Astrophysical Flows
合作研究:天体物理流中自重力可压缩欧拉方程的任意阶结构保持间断伽辽金方法
  • 批准号:
    2309590
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: Extreme-scale Ready High-order Methods for Astrophysical and Laboratory Turbulence
合作研究:天体物理和实验室湍流的极端规模就绪高阶方法
  • 批准号:
    2204668
  • 财政年份:
    2021
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: Extreme-scale Ready High-order Methods for Astrophysical and Laboratory Turbulence
合作研究:天体物理和实验室湍流的极端规模就绪高阶方法
  • 批准号:
    1907898
  • 财政年份:
    2019
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: Extreme-scale Ready High-order Methods for Astrophysical and Laboratory Turbulence
合作研究:天体物理和实验室湍流的极端规模就绪高阶方法
  • 批准号:
    1908551
  • 财政年份:
    2019
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: Extreme-scale Ready High-order Methods for Astrophysical and Laboratory Turbulence
合作研究:天体物理和实验室湍流的极端规模就绪高阶方法
  • 批准号:
    1908834
  • 财政年份:
    2019
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
New Astrophysical Methods for Detecting Spin-Dependent Dark Matter
检测自旋相关暗物质的新天体物理方法
  • 批准号:
    540466-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 15万
  • 项目类别:
    University Undergraduate Student Research Awards
Wave Propagation Methods for Astrophysical Flows
天体物理流的波传播方法
  • 批准号:
    0619037
  • 财政年份:
    2005
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Exploring the non-linear dynamics of relativistic astrophysical shocks with kinetic simulations and advanced visualisation methods
通过动力学模拟和先进的可视化方法探索相对论天体物理冲击的非线性动力学
  • 批准号:
    14045192
  • 财政年份:
    2005
  • 资助金额:
    $ 15万
  • 项目类别:
    Research Grants
Nonparametrical Statistical Methods for Astrophysical and Cosmological Data
天体物理和宇宙学数据的非参数统计方法
  • 批准号:
    0434343
  • 财政年份:
    2004
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了