Wave Propagation Methods for Astrophysical Flows
天体物理流的波传播方法
基本信息
- 批准号:0619037
- 负责人:
- 金额:$ 5.57万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-11-01 至 2008-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research is focused on developing accurate and efficient numericalmethods for the simulation of astrophysical flows. This project will buildon a class of high-resolution shock-capturing methods that have in thelast few years gained popularity in astrophysics. Several numericalchallenges will be investigated including computing high Lorentz factorflows; maintaining divergence-free magnetic fields as dictated by Maxwell'sequations; incorporating space-time curvature for general relativisticflows; including radiative cooling physics; and accurately simulatingmulti-component flows. Adaptive mesh refinement techniques will beincorporated into the simulations in order to resolve regions of theflow where the solution is rapidly varying, and conversely, to useless resolution in regions where the solution remains nearly constant.Special attention will be given to two application problems: the specialrelativistic problem of the interaction of pulsar wind nebulae withsupernovae remnants and the general relativistic problem of accretiononto a rotating black hole.Astrophysics, much like weather prediction and climatology, is a field ofscience in which observations are possible, but direct experimentation isnot. Therefore, direct experiments are replaced by computer simulations. Inorder to carry out these simulations, sophisticated tools from computationalmathematics are required to approximately solve the nonlinear system ofequations that model astrophysical flows. Examples of such flows include theformation of pulsar wind nebulae and the accretion of matter into a black hole.A feature of these flows, and consequently the equations that model them, isthat they can lead to complicated solutions with sharp discontinuities. Overthe past few decades, an important class of computer methods has beendeveloped to accurately and efficiently approximate such solutions. Morerecently these methods have been applied to astrophysical fluid dynamics. Thisresearch will focus on developing and implementing generalizations of thesemethods and also on the application of these methods to specific astrophysicalproblems. The P.I. is actively involved in collaborations between researchersin both the Mathematics and Astronomy Departments at the University of Michigan.
本研究的重点是发展精确、高效的天体物理流数值模拟方法。这个项目将建立一种高分辨率的冲击波捕获方法,这种方法在过去几年里在天体物理学中很受欢迎。将研究几个数字挑战,包括计算高洛伦兹因子流;维持麦克斯韦级数规定的无发散磁场;广义相对论流动中时空曲率的引入包括辐射冷却物理;准确模拟多组分流。自适应网格细化技术将被纳入模拟中,以解决解决方案快速变化的区域,相反,解决方案保持几乎恒定的区域的无用分辨率。特别注意两个应用问题:脉冲星风星云与超新星残余物相互作用的特殊相对论性问题和旋转黑洞吸积的广义相对论性问题。天体物理学,就像天气预报和气候学一样,是一个可以进行观测,但不能进行直接实验的科学领域。因此,直接实验被计算机模拟所取代。为了进行这些模拟,需要使用复杂的计算数学工具来近似地求解模拟天体物理流的非线性方程组。这种流的例子包括脉冲星风星云的形成和物质进入黑洞的吸积。这些流动的一个特点是,它们可以导致具有明显不连续的复杂解。在过去的几十年里,一类重要的计算机方法得到了发展,以准确而有效地近似这类解。最近,这些方法已被应用于天体物理流体动力学。这项研究将集中于发展和实施这些方法的推广,以及这些方法在具体天体物理问题上的应用。P.I.积极参与密歇根大学数学系和天文学系研究人员之间的合作。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
James Rossmanith其他文献
James Rossmanith的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('James Rossmanith', 18)}}的其他基金
Entropy-Consistent Moment-Closure Approximations of Kinetic Boltzmann Equations
动力学玻尔兹曼方程的熵一致矩闭合近似
- 批准号:
2012699 - 财政年份:2020
- 资助金额:
$ 5.57万 - 项目类别:
Standard Grant
Micro-Macro Decomposition Numerical Schemes for Multiscale Simulation of Plasma
等离子体多尺度模拟的微观-宏观分解数值方案
- 批准号:
1620128 - 财政年份:2016
- 资助金额:
$ 5.57万 - 项目类别:
Continuing Grant
Discontinuous Galerkin Schemes for Fluid, Kinetic, and Multiscale Fluid/Kinetic Models in Plasma Physics Applications
等离子体物理应用中流体、动力学和多尺度流体/动力学模型的不连续伽辽金方案
- 批准号:
1419020 - 财政年份:2014
- 资助金额:
$ 5.57万 - 项目类别:
Standard Grant
Space-time DG-FEMs for Fluid and Kinetic Plasma Models
用于流体和动力学等离子体模型的时空 DG-FEM
- 批准号:
1016202 - 财政年份:2010
- 资助金额:
$ 5.57万 - 项目类别:
Continuing Grant
Computational Methods for Astrophysical Flows
天体物理流的计算方法
- 批准号:
0711885 - 财政年份:2007
- 资助金额:
$ 5.57万 - 项目类别:
Standard Grant
Wave Propagation Methods for Astrophysical Flows
天体物理流的波传播方法
- 批准号:
0409972 - 财政年份:2004
- 资助金额:
$ 5.57万 - 项目类别:
Standard Grant
相似海外基金
Novel Methods for Numerical Simulation of Wave Propagation in Inhomogeneous Media
非均匀介质中波传播数值模拟的新方法
- 批准号:
2110407 - 财政年份:2021
- 资助金额:
$ 5.57万 - 项目类别:
Standard Grant
Robust and Efficient Numerical Methods for Electromagnetic Wave Propagation in Complex Media
复杂介质中电磁波传播的鲁棒高效数值方法
- 批准号:
2011943 - 财政年份:2020
- 资助金额:
$ 5.57万 - 项目类别:
Standard Grant
Advances in Numerical Methods for Wave Propagation in Inhomogeneous Media
非均匀介质中波传播数值方法的进展
- 批准号:
2105487 - 财政年份:2020
- 资助金额:
$ 5.57万 - 项目类别:
Standard Grant
Optimized Domain Decomposition Methods for Wave Propagation in Complex Media
复杂介质中波传播的优化域分解方法
- 批准号:
1908602 - 财政年份:2019
- 资助金额:
$ 5.57万 - 项目类别:
Continuing Grant
Advances in Numerical Methods for Wave Propagation in Inhomogeneous Media
非均匀介质中波传播数值方法的进展
- 批准号:
1818747 - 财政年份:2018
- 资助金额:
$ 5.57万 - 项目类别:
Standard Grant
Parallel Semiclassical Methods for Seismic Wave Propagation, Inversion, and Data Analysis
地震波传播、反演和数据分析的并行半经典方法
- 批准号:
1818592 - 财政年份:2018
- 资助金额:
$ 5.57万 - 项目类别:
Standard Grant
Development of analytical methods for cross-polarization components in electromagnetic wave propagation in random media
随机介质中电磁波传播交叉极化分量分析方法的发展
- 批准号:
18K04187 - 财政年份:2018
- 资助金额:
$ 5.57万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Novel wave packet propagation mechanism in metamaterials studied by high spatial- and temporal-resolved imaging methods(Fostering Joint International Research)
通过高空间和时间分辨率成像方法研究超材料中的新型波包传播机制(促进国际联合研究)
- 批准号:
16KK0093 - 财政年份:2017
- 资助金额:
$ 5.57万 - 项目类别:
Fund for the Promotion of Joint International Research (Fostering Joint International Research)
Finite element methods for the simulation of wave propagation in soft viscoelastic biotissue
模拟软粘弹性生物组织中波传播的有限元方法
- 批准号:
1818095 - 财政年份:2016
- 资助金额:
$ 5.57万 - 项目类别:
Studentship
Fast Huygens Sweeping Methods for Large-Scale High Frequency Wave Propagation and Wave-Related Imaging Problems
用于大规模高频波传播和波相关成像问题的快速惠更斯扫描方法
- 批准号:
1522249 - 财政年份:2015
- 资助金额:
$ 5.57万 - 项目类别:
Standard Grant