Novel Approaches to Empirical Force Field Models in Molecular Modeling via Multidimensional Scaling

通过多维尺度建立分子建模中的经验力场模型的新方法

基本信息

  • 批准号:
    0713812
  • 负责人:
  • 金额:
    $ 13.38万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-07-01 至 2011-06-30
  • 项目状态:
    已结题

项目摘要

The project focuses on new computational methods for the determination of biomolecular structure, which is crucial to our understanding of how biomolecules such as proteins perform the functions they do. This functional understanding, in turn, figures in the development of techniques for disease diagnosis and treatment. A widely used approach to determining the structure of biomolecules is the minimization of the molecule''s potential energy, computed using a force-field model. The potential energy accounts for such features as the stretching of bonds between atoms, the deformation of bond angles, and the interactions of non-bonded atoms (e.g., electrostatic forces). Of interest are molecular configurations that have very low potential energies, since biomolecules fold themselves into shapes that tend to minimize the potential energy: Nature is an optimizer. One seeks physically meaningful molecular configurations by applying computational techniques to systematically vary the locations of the atoms to reduce the potential energy. A serious difficulty encountered when applying computational algorithms to energy minimization arises when the search needs to move through configurations with high potential energies on the way to configurations with low potential energies. For instance, moving atoms close past one another increases the potential energy due to repulsive forces. Minimization algorithms have difficulty dealing with this situation since they cannot be sure in advance that allowing increases in potential energy will ultimately lead to configurations with lower energy. As a consequence, algorithms may halt at structures that minimize the potential energy only among nearby configurations, but not overall, and are not of physical interest. This project explores a new approach to address this difficulty. We pose the problem in terms of the interatomic distances, rather than the locations of the atoms, rewriting the potential energy in terms of these distances. Roughly speaking, our approach corresponds to adding fictitious copies of each atom, one for each of the other atoms. Of course, we must also add conditions that ensure that all the fictitious copies of an atom ultimately coalesce into a single atom. However, we use conditions that can be relaxed at intermediate steps of the energy minimization process and are only enforced as we approach a solution. This approach benefits from adding a large number of extra dimensions to the search space. As an analogy, imagine a search for the lowest point in North America, Death Valley, starting from Chicago. As purely earthbound voyagers we might be fooled into stopping at a local low point at the foot of the Rockies or around the Great Salt Lake, just as optimization algorithms might halt at local energy minimizers. But if we relax the requirement of traveling by land and allow travel by air, then we can pass over local minimizers on the ground to arrive at the desired destination. Preliminary tests have shown that our approach greatly improves the behavior of the more notoriously troublesome energy terms. This project will investigate its use for molecular structure determination and will examine extensions to other applications such as drug docking and finding transition mechanisms for chemical reactions.
该项目重点关注用于确定生物分子结构的新计算方法,这对于我们了解蛋白质等生物分子如何执行其功能至关重要。 这种功能性理解反过来又体现在疾病诊断和治疗技术的发展中。 确定生物分子结构的一种广泛使用的方法是使用力场模型计算分子势能的最小化。 势能解释了诸如原子之间的键的拉伸、键角的变形和非键合原子的相互作用(例如,静电力)。 感兴趣的是具有非常低势能的分子构型,因为生物分子将自己折叠成倾向于使势能最小化的形状:自然是一个优化器。 人们通过应用计算技术来系统地改变原子的位置以降低势能,从而寻求物理上有意义的分子构型。 一个严重的困难时遇到的应用计算算法的能量最小化时出现的搜索需要移动通过配置的方式与低势能的高势能的配置。 例如,移动的原子彼此靠近,由于排斥力而增加了势能。 最小化算法很难处理这种情况,因为它们不能预先确定允许势能的增加最终会导致具有较低能量的配置。 因此,算法可能会停止在最小化势能的结构,只有在附近的配置,但不是整体,并没有物理利益。 这个项目探索了一种新的方法来解决这个难题。 我们用原子间的距离而不是原子的位置来提出问题,用这些距离来重写势能。 粗略地说,我们的方法对应于添加每个原子的虚拟副本,每个其他原子一个。 当然,我们还必须加上一些条件,以确保原子的所有虚拟副本最终都能合并成一个原子。 然而,我们使用的条件,可以放松在能量最小化过程的中间步骤,只有当我们接近一个解决方案时才强制执行。 这种方法的好处是向搜索空间添加了大量额外的维度。 打个比方,想象一下从芝加哥出发,寻找北美的最低点死亡谷。 作为纯粹的地球旅行者,我们可能会被愚弄,停在落基山脉脚下或大盐湖周围的局部低点,就像优化算法可能会停在局部能量最小化点一样。 但是如果我们放宽对陆路旅行的要求,允许乘飞机旅行,那么我们就可以越过地面上的局部极小点到达期望的目的地。 初步测试表明,我们的方法大大改善了更臭名昭著的麻烦的能量项的行为。 该项目将研究其用于分子结构测定,并将研究扩展到其他应用,如药物对接和寻找化学反应的过渡机制。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Robert Lewis其他文献

Telework : the experiences of teleworkers, their non-teleworking colleagues and their line managers at the Conseil General du Finistere
远程办公:菲尼斯特雷总委员会远程办公人员、非远程办公同事及其直线经理的经验
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Robert Lewis
  • 通讯作者:
    Robert Lewis
Manufacturing Montreal: The Making of an Industrial Landscape, 1850 to 1930
蒙特利尔制造业:工业景观的形成,1850 年至 1930 年
  • DOI:
    10.5860/choice.38-5683
  • 发表时间:
    2000
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Robert Lewis
  • 通讯作者:
    Robert Lewis
Burnout in Cybersecurity Incident Responders: Exploring the Factors that Light the Fire
网络安全事件响应者的倦怠:探索引发火灾的因素
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Subigya Nepal;Javier Hernandez;Robert Lewis;Ahad Chaudhry;Brian Houck;Eric Knudsen;Raul Rojas;Ben Tankus;Hemma Prafullchandra;M. Czerwinski
  • 通讯作者:
    M. Czerwinski
Détente and dissent
缓和与异议
  • DOI:
    10.1038/276146a0
  • 发表时间:
    1978-11-09
  • 期刊:
  • 影响因子:
    48.500
  • 作者:
    Robert Lewis
  • 通讯作者:
    Robert Lewis
Focusing Students: Three Approaches for Learning Through Evaluation
  • DOI:
    10.1023/a:1022994417651
  • 发表时间:
    1999-03-01
  • 期刊:
  • 影响因子:
    2.400
  • 作者:
    Robert Lewis;Paul Berghoff;Pierette Pheeney
  • 通讯作者:
    Pierette Pheeney

Robert Lewis的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Robert Lewis', 18)}}的其他基金

IIS (G&V) EAGER: Modeling and Rendering a Fibre Bundle
IIS(G
  • 批准号:
    1048873
  • 财政年份:
    2010
  • 资助金额:
    $ 13.38万
  • 项目类别:
    Standard Grant
Scientific Computing Research Environments for the Mathematical Sciences
数学科学的科学计算研究环境
  • 批准号:
    0215444
  • 财政年份:
    2002
  • 资助金额:
    $ 13.38万
  • 项目类别:
    Standard Grant
XVI International Conference on Atomic Physics
第十六届国际原子物理学会议
  • 批准号:
    9814193
  • 财政年份:
    1998
  • 资助金额:
    $ 13.38万
  • 项目类别:
    Standard Grant
Inservice Institutes for Junior/Middle School Science Teachers with Presidential Awardees as Instructional Mentors
以总统获奖者为指导的初中/初中科学教师在职学院
  • 批准号:
    9055488
  • 财政年份:
    1991
  • 资助金额:
    $ 13.38万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Exploration in Algebraic Topology
数学科学:代数拓扑探索
  • 批准号:
    9100782
  • 财政年份:
    1991
  • 资助金额:
    $ 13.38万
  • 项目类别:
    Standard Grant
Twelfth International Conference on Atomic Physics; July 29-August 3, 1990; Ann Arbor, Michigan (Physics)
第十二届国际原子物理学会议;
  • 批准号:
    8920499
  • 财政年份:
    1990
  • 资助金额:
    $ 13.38万
  • 项目类别:
    Standard Grant
Presidential Award for Excellence in Science and MathematicsTeaching
科学和数学教学卓越总统奖
  • 批准号:
    9055717
  • 财政年份:
    1990
  • 资助金额:
    $ 13.38万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Undergraduate Research in Nilpotent Spaces
数学科学:幂零空间的本科研究
  • 批准号:
    8900752
  • 财政年份:
    1989
  • 资助金额:
    $ 13.38万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Undergraduate Research in Nilpotent Spaces
数学科学:幂零空间的本科研究
  • 批准号:
    8803864
  • 财政年份:
    1988
  • 资助金额:
    $ 13.38万
  • 项目类别:
    Standard Grant
Presidential Award for Excellence in Science and MathematicsTeaching
科学和数学教学卓越总统奖
  • 批准号:
    8554498
  • 财政年份:
    1985
  • 资助金额:
    $ 13.38万
  • 项目类别:
    Standard Grant

相似国自然基金

Lagrangian origin of geometric approaches to scattering amplitudes
  • 批准号:
    24ZR1450600
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Connecting Empirical and Mathematical Approaches to Collective Behaviour
将经验方法和数学方法与集体行为联系起来
  • 批准号:
    RGPIN-2017-06094
  • 财政年份:
    2022
  • 资助金额:
    $ 13.38万
  • 项目类别:
    Discovery Grants Program - Individual
Ecosystem stability under global change: Linking theoretical and empirical approaches
全球变化下的生态系统稳定性:理论与实证方法的结合
  • 批准号:
    568453-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 13.38万
  • 项目类别:
    Postdoctoral Fellowships
Exploration of agricultural and rural development approaches in the SDGs era: Empirical research on the effectiveness of nutrition-oriented agriculture.
SDGs时代农业农村发展路径探索:营养型农业有效性实证研究
  • 批准号:
    22H03835
  • 财政年份:
    2022
  • 资助金额:
    $ 13.38万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
VAT pass-through under imperfect competition: Theoretical and empirical approaches
不完全竞争下的增值税转嫁:理论与实证方法
  • 批准号:
    21K01547
  • 财政年份:
    2021
  • 资助金额:
    $ 13.38万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Connecting Empirical and Mathematical Approaches to Collective Behaviour
将经验方法和数学方法与集体行为联系起来
  • 批准号:
    RGPIN-2017-06094
  • 财政年份:
    2021
  • 资助金额:
    $ 13.38万
  • 项目类别:
    Discovery Grants Program - Individual
NSF Postdoctoral Fellowship in Biology FY 2021: Empirical and theoretical approaches to understanding the evolution of gene regulatory networks
2021 财年 NSF 生物学博士后奖学金:理解基因调控网络进化的经验和理论方法
  • 批准号:
    2109787
  • 财政年份:
    2021
  • 资助金额:
    $ 13.38万
  • 项目类别:
    Fellowship Award
Connecting Empirical and Mathematical Approaches to Collective Behaviour
将经验方法和数学方法与集体行为联系起来
  • 批准号:
    RGPIN-2017-06094
  • 财政年份:
    2020
  • 资助金额:
    $ 13.38万
  • 项目类别:
    Discovery Grants Program - Individual
Connecting Empirical and Mathematical Approaches to Collective Behaviour
将经验方法和数学方法与集体行为联系起来
  • 批准号:
    RGPIN-2017-06094
  • 财政年份:
    2019
  • 资助金额:
    $ 13.38万
  • 项目类别:
    Discovery Grants Program - Individual
Empirical Analysis on Environmental Voluntary Approaches in Japan
日本环境自愿方法的实证分析
  • 批准号:
    18K01615
  • 财政年份:
    2018
  • 资助金额:
    $ 13.38万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Connecting Empirical and Mathematical Approaches to Collective Behaviour
将经验方法和数学方法与集体行为联系起来
  • 批准号:
    RGPIN-2017-06094
  • 财政年份:
    2018
  • 资助金额:
    $ 13.38万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了