Modeling Fluid Dynamics and Solute Transport in the Kidney

模拟肾脏中的流体动力学和溶质转运

基本信息

  • 批准号:
    0715021
  • 负责人:
  • 金额:
    $ 27.42万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-08-15 至 2012-07-31
  • 项目状态:
    已结题

项目摘要

The overall goal of this project is to use analysis and computational mathematics to gain a better understanding of the effects of the complex fluid dynamics, frequently exhibited by renal tubular flows, on renal transport of water and solutes. Using the immersed boundary approach, mathematical models will be built to represent the fluid dynamics around the proximal tubule brush border microvilli, and to represent the tubular flow in a papillary collecting duct undergoing peristaltic contractions. The resulting models will be used to study the effects of the two-way fluid-structure interactions on solute and water transport along the proximal tubule and along the collecting duct. Additionally, nonlinear optimization techniques will be used to further the physiological investigation of cellular homeostasis, by assessing the effectiveness of various regulatory mechanisms in homeostatic recovery.If one is stranded in the ocean for days, should one drink the sea water to quench one's thirst? The answer depends on whether the subject is a person (don't!) or a rat (no problem, drink away!). The reason is that the osmolality (i.e., total solute concentration) of sea water is higher than the maximum urine osmolality that can be produced by a human. In contrast, a little rat can produce a urine twice as concentrated as sea water. It may be hard to believe, but the mechanism by which some mammals produce highly concentrated urine is not well understood. This project will use mathematical analysis and computational techniques to answer a number of basic and important questions in renal physiology: How do the peristaltic contractions of the renal papilla impact the concentrating mechanism of the kidney? How do the brush border microvilli, which are found along portions of the nephrons (little tubules in the kidney), affect solute transport in the kidney? What are the most effective ways for kidney cells to change aspects of its transport properties in order to survive in its ever-changing surroundings? The answers to those questions are crucial in an overall understanding of renal physiology, renal pathophysiology, and other autoregulatory mechanisms.
该项目的总体目标是使用分析和计算数学,以更好地了解复杂的流体动力学的影响,经常表现出肾小管流量,对肾脏的水和溶质的运输。使用浸没边界方法,将建立数学模型来表示近端小管刷状缘微绒毛周围的流体动力学,并表示在乳头状集合管中进行蠕动收缩的管状流动。 由此产生的模型将被用来研究双向流体结构相互作用对溶质和水的运输沿着近端小管和沿着集合管的影响。此外,非线性优化技术将被用于进一步的生理研究细胞内稳态,通过评估各种调节机制在恢复内稳态的有效性。如果一个人被困在海洋几天,应该喝海水解渴吗?答案取决于主题是否是人(不要!)或老鼠(没问题,喝吧!)。原因是渗透压(即,总溶质浓度)高于人可产生的最大尿渗透压。相比之下,一只小老鼠可以产生两倍于海水浓度的尿液。这可能很难相信,但一些哺乳动物产生高浓度尿液的机制还不清楚。该项目将使用数学分析和计算技术来回答肾脏生理学中的一些基本和重要的问题:肾乳头的蠕动收缩如何影响肾脏的浓缩机制?沿着肾单位(肾脏中的小管)沿着分布的刷状缘微绒毛如何影响肾脏中的溶质转运?为了在不断变化的环境中生存,肾细胞改变其运输特性的最有效方法是什么?这些问题的答案是至关重要的,在全面了解肾脏生理学,肾脏病理生理学,和其他自动调节机制。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Anita Layton其他文献

scVAEDer: integrating deep diffusion models and variational autoencoders for single-cell transcriptomics analysis
  • DOI:
    10.1186/s13059-025-03519-4
  • 发表时间:
    2025-03-21
  • 期刊:
  • 影响因子:
    9.400
  • 作者:
    Mehrshad Sadria;Anita Layton
  • 通讯作者:
    Anita Layton
Synthetic Data from Diffusion Models Improve Drug Discovery Prediction
扩散模型的综合数据改善药物发现预测
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bing Hu;Ashish Saragadam;Anita Layton;Helen Chen
  • 通讯作者:
    Helen Chen

Anita Layton的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Anita Layton', 18)}}的其他基金

Collaborative Research: Comparative Study of Desert and Non-desert Rodent Kidneys
合作研究:沙漠和非沙漠啮齿动物肾脏的比较研究
  • 批准号:
    1263995
  • 财政年份:
    2013
  • 资助金额:
    $ 27.42万
  • 项目类别:
    Continuing Grant
Workshop on Fluid Motion Driven by Immersed Structures: Analysis, Computation, and Applications
浸入式结构驱动流体运动研讨会:分析、计算和应用
  • 批准号:
    1003889
  • 财政年份:
    2010
  • 资助金额:
    $ 27.42万
  • 项目类别:
    Standard Grant
A Conference on Applications of Analysis to Mathematical Biology
数学生物学分析应用会议
  • 批准号:
    0701412
  • 财政年份:
    2007
  • 资助金额:
    $ 27.42万
  • 项目类别:
    Standard Grant
ADVANCE Fellows Award: Mathematical Modeling of Renal Physiology
ADVANCE 研究员奖:肾脏生理学数学建模
  • 批准号:
    0340654
  • 财政年份:
    2004
  • 资助金额:
    $ 27.42万
  • 项目类别:
    Standard Grant

相似国自然基金

随机进程代数模型的Fluid逼近问题研究
  • 批准号:
    61472343
  • 批准年份:
    2014
  • 资助金额:
    75.0 万元
  • 项目类别:
    面上项目
ICF中电子/离子输运的PIC-FLUID混合模拟方法研究
  • 批准号:
    11275269
  • 批准年份:
    2012
  • 资助金额:
    80.0 万元
  • 项目类别:
    面上项目

相似海外基金

eMB: Collaborative Research: Fluid Dynamics and Infectious Diseases: An Integrated Modeling Framework
eMB:协作研究:流体动力学和传染病:集成建模框架
  • 批准号:
    2324691
  • 财政年份:
    2023
  • 资助金额:
    $ 27.42万
  • 项目类别:
    Standard Grant
eMB: Collaborative Research: Fluid Dynamics and Infectious Diseases: An Integrated Modeling Framework
eMB:协作研究:流体动力学和传染病:集成建模框架
  • 批准号:
    2324692
  • 财政年份:
    2023
  • 资助金额:
    $ 27.42万
  • 项目类别:
    Standard Grant
Prediction of endovascular treatment effectiveness for cerebral aneurysms using computational fluid dynamics with porous media modeling
使用计算流体动力学和多孔介质模型预测脑动脉瘤的血管内治疗效果
  • 批准号:
    23K15665
  • 财政年份:
    2023
  • 资助金额:
    $ 27.42万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
A Novel Framework for Model Reduction and Data-Driven Modeling of Fluid-Structure System: Application to Flapping Dynamics
流固系统模型简化和数据驱动建模的新框架:在扑动动力学中的应用
  • 批准号:
    RGPIN-2019-05065
  • 财政年份:
    2022
  • 资助金额:
    $ 27.42万
  • 项目类别:
    Discovery Grants Program - Individual
Collaborative Research: Development of Low Order Modeling Methods for Oscillating Foil Energy Harvesting based on Experimental and Computational Fluid Dynamics
合作研究:基于实验和计算流体动力学的振荡箔能量收集低阶建模方法的开发
  • 批准号:
    2234498
  • 财政年份:
    2021
  • 资助金额:
    $ 27.42万
  • 项目类别:
    Standard Grant
Modeling and Simulation of Interacting Wings: Collective Dynamics in Inertial Fluid Flows
相互作用机翼的建模和仿真:惯性流体流动的集体动力学
  • 批准号:
    2108839
  • 财政年份:
    2021
  • 资助金额:
    $ 27.42万
  • 项目类别:
    Standard Grant
A Novel Framework for Model Reduction and Data-Driven Modeling of Fluid-Structure System: Application to Flapping Dynamics
流固系统模型简化和数据驱动建模的新框架:在扑动动力学中的应用
  • 批准号:
    RGPIN-2019-05065
  • 财政年份:
    2021
  • 资助金额:
    $ 27.42万
  • 项目类别:
    Discovery Grants Program - Individual
Physics-Constrained Deep Learning for Surrogate Modeling of Dynamics of Fluids and Fluid-Structure Interaction
用于流体动力学和流固耦合代理建模的物理约束深度学习
  • 批准号:
    1934300
  • 财政年份:
    2020
  • 资助金额:
    $ 27.42万
  • 项目类别:
    Standard Grant
A Novel Framework for Model Reduction and Data-Driven Modeling of Fluid-Structure System: Application to Flapping Dynamics
流固系统模型简化和数据驱动建模的新框架:在扑动动力学中的应用
  • 批准号:
    RGPIN-2019-05065
  • 财政年份:
    2020
  • 资助金额:
    $ 27.42万
  • 项目类别:
    Discovery Grants Program - Individual
Enabling Cellular Therapy Biomanufacturing through Integrated Modeling of Fluid Dynamics and Cellular Metabolism in Bioreactors
通过生物反应器中流体动力学和细胞代谢的集成建模实现细胞治疗生物制造
  • 批准号:
    409802
  • 财政年份:
    2019
  • 资助金额:
    $ 27.42万
  • 项目类别:
    Operating Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了