Physics-Constrained Deep Learning for Surrogate Modeling of Dynamics of Fluids and Fluid-Structure Interaction

用于流体动力学和流固耦合代理建模的物理约束深度学习

基本信息

  • 批准号:
    1934300
  • 负责人:
  • 金额:
    $ 30.03万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-01-01 至 2022-12-31
  • 项目状态:
    已结题

项目摘要

This project will develop an innovative modeling framework for coupled dynamics of fluid-structure systems based on deep learning, which will contribute new knowledge on rapid modeling of dynamic systems in general. Complex fluids and their interactions with surrounding structures are ubiquitous in natural and industrial processes, e.g., blood flows in compliant vessels, flapping-wing miniature air vehicles, flexible risers in the offshore industry. Predictive modeling of fluid-structure interaction problems is of great significance in numerous engineering applications. However, existing models are primarily based on first-principles methods and numerical discretization techniques, which are computationally expensive and require significant domain expertise. This drawback poses great challenges to real-time predictions (e.g., clinical diagnosis of vascular diseases) and many-query applications (e.g., optimization design of aircraft and uncertainty quantification in high-consequence systems). This grant will support fundamental research on the development of a novel modeling framework by leveraging recent advances in machine learning and prior knowledge of physical principles. This new approach will enable rapid modeling and fast prediction for dynamics of fluid-structure systems, which will have strong practical impacts on a broad spectrum of real-world problems, including cardiovascular diagnosis, aerodynamic design, and active flow control. Therefore, the results of this research can help enhance U.S. healthcare/wellness, national security, and economic competitiveness. Moreover, the multi-disciplinary research topics across physical modeling and artificial intelligence can stimulate interest in the STEM disciplines among young people and thus will have a positive impact on science and engineering education.Data-based surrogate modeling is a computationally feasible way to tackle fluid-structure interaction problems that require rapid predictions or repeated model evaluations. Deep learning is becoming a popular surrogate modeling approach due to its capability of handling strong nonlinearity and high dimensionality. However, current success of deep learning in the computer science community heavily relies on large-scale labeled data, which are usually not available in the physical modeling community. To address this challenge, this research aims to pioneer a physics-constrained deep learning framework for surrogate modeling of fluid-structure interaction dynamics, which will enable efficient learning with sparse training data. Specifically, a structured deep neural network will be devised to encode the initial and boundary conditions, and the governing equations will be imposed during the training by redesigning the loss (or likelihood) functions to conform to the physics. Numerical experiments of a suite of dynamic fluid-structure interaction problems are planned to answer questions regarding the effect of adding physical constraints in deep learning and their potential in modeling complex physical systems in a parametric setting. This project tackles long-standing difficulties in surrogate modeling of complex dynamical systems with nonlinearity, high-dimensionality, and data scarcity, and contributes to the modeling of dynamical systems in general. The learning framework will bring revolutionary impacts on data-driven surrogate modeling by shifting the paradigm from black-box, data-intensive learning to physics-constrained, data-scarce learning.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目将开发基于深度学习的流体-结构系统耦合动力学的创新建模框架,这将为一般动态系统的快速建模提供新的知识。复杂流体及其与周围结构的相互作用在自然和工业过程中无处不在,例如,血液在顺应性血管中流动,扑翼微型飞行器,近海工业中的柔性导管。流固耦合问题的预测建模在众多工程应用中具有重要意义。然而,现有的模型主要是基于第一原理方法和数值离散化技术,这是计算昂贵,需要大量的领域专业知识。该缺点对实时预测(例如,血管疾病的临床诊断)和多查询应用(例如,飞机优化设计和高后果系统中的不确定性量化)。该补助金将通过利用机器学习的最新进展和物理原理的先验知识,支持开发新型建模框架的基础研究。这种新方法将实现流体结构系统动力学的快速建模和快速预测,这将对广泛的现实问题产生强大的实际影响,包括心血管诊断,空气动力学设计和主动流量控制。因此,这项研究的结果可以帮助提高美国的医疗保健,国家安全和经济竞争力。此外,跨物理建模和人工智能的多学科研究课题可以激发年轻人对STEM学科的兴趣,从而对科学和工程教育产生积极影响。基于数据的代理建模是解决需要快速预测或重复模型评估的流体-结构相互作用问题的计算可行方法。深度学习由于其处理强非线性和高维的能力而成为一种流行的代理建模方法。然而,目前深度学习在计算机科学界的成功在很大程度上依赖于大规模的标记数据,这在物理建模界通常是不可用的。为了应对这一挑战,本研究旨在开创一种物理约束的深度学习框架,用于流体-结构交互动力学的代理建模,这将使稀疏训练数据的有效学习成为可能。具体来说,将设计一个结构化的深度神经网络来编码初始和边界条件,并通过重新设计损失(或似然)函数来在训练期间施加控制方程,以符合物理学。一系列动态流体-结构相互作用问题的数值实验计划回答有关在深度学习中添加物理约束的影响及其在参数设置中建模复杂物理系统的潜力的问题。该项目解决了长期存在的非线性,高维和数据稀缺的复杂动力系统的替代建模的困难,并有助于一般动力系统的建模。该学习框架将通过将范式从黑盒、数据密集型学习转变为物理约束、数据稀缺型学习,为数据驱动的替代建模带来革命性的影响。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(32)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
PhyCRNet: Physics-informed Convolutional-Recurrent Network for Solving Spatiotemporal PDEs
  • DOI:
    10.1016/j.cma.2021.114399
  • 发表时间:
    2021-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Pu Ren;Chengping Rao;Yang Liu;Jianxun Wang;Hao Sun-
  • 通讯作者:
    Pu Ren;Chengping Rao;Yang Liu;Jianxun Wang;Hao Sun-
Bayesian Spline Learning for Equation Discovery of Nonlinear Dynamics with Quantified Uncertainty
  • DOI:
    10.48550/arxiv.2210.08095
  • 发表时间:
    2022-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Luning Sun;D. Huang;Hao Sun-;Jian-Xun Wang
  • 通讯作者:
    Luning Sun;D. Huang;Hao Sun-;Jian-Xun Wang
Physics-informed deep learning for solving phonon Boltzmann transport equation with large temperature non-equilibrium
  • DOI:
    10.1038/s41524-022-00712-y
  • 发表时间:
    2022-02-08
  • 期刊:
  • 影响因子:
    9.7
  • 作者:
    Li, Ruiyang;Wang, Jian-Xun;Luo, Tengfei
  • 通讯作者:
    Luo, Tengfei
A non‐iterative domain decomposition method for the interaction between a fluid and a thick structure
流体与厚结构相互作用的非迭代域分解方法
Numerical Modeling of the Fluid-Porohyperelastic Structure Interaction
流体-多孔超弹性结构相互作用的数值模拟
  • DOI:
    10.1137/20m1386268
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Seboldt, Anyastassia;Oyekole, Oyekola;Tambača, Josip;Bukač, Martina
  • 通讯作者:
    Bukač, Martina
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jian-Xun Wang其他文献

Post-translational modification of Parkin and its research progress in cancer
帕金的翻译后修饰及其在癌症中的研究进展
  • DOI:
    10.1186/s40880-019-0421-5
  • 发表时间:
    2019-11-21
  • 期刊:
  • 影响因子:
    24.900
  • 作者:
    Dan Ding;Xiang Ao;Ying Liu;Yuan-Yong Wang;Hong-Ge Fa;Meng-Yu Wang;Yu-Qi He;Jian-Xun Wang
  • 通讯作者:
    Jian-Xun Wang
Erratum to: Determining the degradation efficiency and mechanisms of ethyl violet using HPLC-PDA-ESI-MS and GC-MS
  • DOI:
    10.1186/1752-153x-8-24
  • 发表时间:
    2014-04-17
  • 期刊:
  • 影响因子:
    4.600
  • 作者:
    Chung-Shin Lu;Wan-Yu Lin;Jian-Xun Wang;Chia-Wei Wu;Chiing-Chang Chen
  • 通讯作者:
    Chiing-Chang Chen
Gradient-free optimization of non-differentiable hybrid neural solvers for spatially heterogeneous composites
用于空间异质复合材料的不可微混合神经求解器的无梯度优化
Conditional neural field latent diffusion model for generating spatiotemporal turbulence
用于生成时空湍流的条件神经场潜在扩散模型
  • DOI:
    10.1038/s41467-024-54712-1
  • 发表时间:
    2024-11-29
  • 期刊:
  • 影响因子:
    15.700
  • 作者:
    Pan Du;Meet Hemant Parikh;Xiantao Fan;Xin-Yang Liu;Jian-Xun Wang
  • 通讯作者:
    Jian-Xun Wang
JAX-BTE: a GPU-accelerated differentiable solver for phonon Boltzmann transport equations
JAX-BTE:用于声子玻尔兹曼输运方程的 GPU 加速可微求解器
  • DOI:
    10.1038/s41524-025-01635-0
  • 发表时间:
    2025-05-09
  • 期刊:
  • 影响因子:
    11.900
  • 作者:
    Wenjie Shang;Jiahang Zhou;J. P. Panda;Zhihao Xu;Yi Liu;Pan Du;Jian-Xun Wang;Tengfei Luo
  • 通讯作者:
    Tengfei Luo

Jian-Xun Wang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jian-Xun Wang', 18)}}的其他基金

CAREER: Forward and Inverse Uncertainty Quantification of Cardiovascular Fluid-Structure Dynamics via Multi-fidelity Physics-Informed Bayesian Geometric Deep Learning
职业:通过多保真物理信息贝叶斯几何深度学习对心血管流体结构动力学进行正向和逆向不确定性量化
  • 批准号:
    2047127
  • 财政年份:
    2021
  • 资助金额:
    $ 30.03万
  • 项目类别:
    Continuing Grant

相似国自然基金

新型IIIB、IVB 族元素手性CGC金属有机化合物(Constrained-Geometry Complexes)的合成及反应性研究
  • 批准号:
    20602003
  • 批准年份:
    2006
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: RI: Small: Deep Constrained Learning for Power Systems
合作研究:RI:小型:电力系统的深度约束学习
  • 批准号:
    2345528
  • 财政年份:
    2023
  • 资助金额:
    $ 30.03万
  • 项目类别:
    Standard Grant
Imaging Epilepsy Sources with Biophysically Constrained Deep Neural Networks
使用生物物理约束的深度神经网络对癫痫源进行成像
  • 批准号:
    10655833
  • 财政年份:
    2023
  • 资助金额:
    $ 30.03万
  • 项目类别:
Collaborative Research: AMPS: Deep-Learning-Enabled Distributed Optimization Algorithms for Stochastic Security Constrained Unit Commitment
合作研究:AMPS:用于随机安全约束单元承诺的深度学习分布式优化算法
  • 批准号:
    2229345
  • 财政年份:
    2023
  • 资助金额:
    $ 30.03万
  • 项目类别:
    Standard Grant
Collaborative Research: AMPS: Deep-Learning-Enabled Distributed Optimization Algorithms for Stochastic Security Constrained Unit Commitment
合作研究:AMPS:用于随机安全约束单元承诺的深度学习分布式优化算法
  • 批准号:
    2229344
  • 财政年份:
    2023
  • 资助金额:
    $ 30.03万
  • 项目类别:
    Standard Grant
Deep Earth evolution constrained by elemental partitioning using first-principles calculations.and tungsten isotope secular variation
使用第一原理计算受元素分配约束的地球深部演化和钨同位素长期变化
  • 批准号:
    22H01327
  • 财政年份:
    2022
  • 资助金额:
    $ 30.03万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Collaborative Research: RI: Small: Deep Constrained Learning for Power Systems
合作研究:RI:小型:电力系统的深度约束学习
  • 批准号:
    2007095
  • 财政年份:
    2020
  • 资助金额:
    $ 30.03万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Small: Deep Constrained Learning for Power Systems
合作研究:RI:小型:电力系统的深度约束学习
  • 批准号:
    2007164
  • 财政年份:
    2020
  • 资助金额:
    $ 30.03万
  • 项目类别:
    Standard Grant
SHF: Small: Synthesis of Complex Deep Neural Networks on Distributed Resource-Constrained Devices
SHF:小型:分布式资源受限设备上复杂深度神经网络的综合
  • 批准号:
    2006394
  • 财政年份:
    2020
  • 资助金额:
    $ 30.03万
  • 项目类别:
    Standard Grant
Efficient deep learning in resource constrained environments
资源受限环境下的高效深度学习
  • 批准号:
    2053098
  • 财政年份:
    2018
  • 资助金额:
    $ 30.03万
  • 项目类别:
    Studentship
Exploring the modelling of behaviour and context using deep learning under constrained computing platforms with applications to Digital Health
在受限计算平台下使用深度学习探索行为和情境建模及其在数字健康中的应用
  • 批准号:
    1892895
  • 财政年份:
    2017
  • 资助金额:
    $ 30.03万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了