01U07TAMLiang, Controlled Assembly of Metallic Clusters for High-Performance Optical Devices

01U07TAMLiang,高性能光学器件金属团簇的受控组装

基本信息

项目摘要

Until now, optical fields have been treated only as propagating waves. However, atomic-scale objects can also see the near-field. It follows that the precise fabrication of nano metallic clusters can bridge the gap between near-field and far-field, resulting in a whole new generation of optical materials and devices with precisely engineered optical properties. To achieve these goals, the precise fabrication of nano-metallic structures is required, with feature sizes on the scale of a few nanometers. A novel controlled assembly process for metallic nano-structures will combine the best features of chemical self-assembly and nano-lithography, while eliminating the disadvantages of each. This is done by doping through combined electrochemical and mechanical stimulation using a scanning probe microscope (SPM), followed by controlled nano-metal growth and/or stabilization. This controlled-assembly technique enables nanoscale positioning precision, is able to produce high-crystal-quality metal, and be reproducible, even for complex metallic structures as needed for wafer-integrated fabrication. The work will concentrate initially on optical nano-wires with widths on the order of 50 -150 nm. The research team is formed with experts in material science, and in non-linear and quantum optics and engages students in multi-disciplinary work. The impact of this could be far-reaching. For example, high order nonlinear optical and Raman interactions can be produced at milliwatt power levels. Single molecule emitters will see such large vacuum Rabi frequencies that the damping effects of spontaneous emission will become negligible. These nano-optic devices will have a wide range of DoD applications, ranging from ultra-sensitive chemical and biological sensors, to high temperature IR detectors, to novel multi-spectral focal plane arrays.
到目前为止,光场只被视为传播波。然而,原子尺度的物体也可以看到近场。因此,纳米金属团簇的精确制造可以弥合近场和远场之间的差距,从而产生具有精确工程光学特性的全新一代光学材料和器件。为了实现这些目标,需要精确制造纳米金属结构,其特征尺寸在几纳米的尺度上。一种新型的金属纳米结构控制组装工艺将化学自组装和纳米光刻技术的优点结合起来,同时消除各自的缺点。这是通过使用扫描探针显微镜(SPM)通过电化学和机械刺激相结合的掺杂来实现的,然后是受控的纳米金属生长和/或稳定。这种控制组装技术实现了纳米级的定位精度,能够生产高晶体质量的金属,并且是可复制的,甚至对于晶圆集成制造所需的复杂金属结构也是如此。这项工作最初将集中在宽度为50 -150纳米的光学纳米线上。该研究团队由材料科学、非线性光学和量子光学专家组成,并吸引学生参与多学科工作。这种影响可能是深远的。例如,高阶非线性光学和拉曼相互作用可以在毫瓦功率水平上产生。单分子发射器将看到如此大的真空拉比频率,自发发射的阻尼效应将变得可以忽略不计。这些纳米光学器件将具有广泛的国防部应用,从超灵敏的化学和生物传感器,到高温红外探测器,再到新型多光谱焦平面阵列。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Philip Hemmer其他文献

Advanced Synthesis and Applications of Uniform NaGdF4 Nanorods in Biophotonics and Imaging
均匀 NaGdF4 纳米棒的先进合成及其在生物光子学和成像中的应用
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shahriar Esmaeili;Navid Rajil;Ayla Hazrathosseini;Philip Hemmer
  • 通讯作者:
    Philip Hemmer

Philip Hemmer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Philip Hemmer', 18)}}的其他基金

Collaborative Research: A Fast, Scalable, and High-Fidelity Spin Entangling Gate On-A-Chip
合作研究:快速、可扩展且高保真的片上自旋纠缠门
  • 批准号:
    2032589
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Standard Grant

相似海外基金

3D Nanoprinting via Controlled Assembly of Molecules
通过受控分子组装进行 3D 纳米打印
  • 批准号:
    2304986
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Creation of crystalline polysiloxane materials by controlled assembly of nanobuilding blocks
通过纳米构件的受控组装创建结晶聚硅氧烷材料
  • 批准号:
    23H02051
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Environmentally Controlled Mechanics and Assembly of Basement Membrane Macromolecules
基底膜大分子的环境控制力学与组装
  • 批准号:
    559777-2021
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Controlled Assembly of Nanocellulose into Functional Hierarchical Mesostructures
纳米纤维素受控组装成功能性分层介观结构
  • 批准号:
    RGPIN-2018-06818
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Collaborative Research: Magnetically-Controlled Modules with Reconfigurable Self-Assembly and Disassembly
合作研究:具有可重构自组装和拆卸功能的磁控模块
  • 批准号:
    2130775
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Magnetically-Controlled Modules with Reconfigurable Self-Assembly and Disassembly
合作研究:具有可重构自组装和拆卸功能的磁控模块
  • 批准号:
    2130793
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Environmentally Controlled Mechanics and Assembly of Basement Membrane Macromolecules
基底膜大分子的环境控制力学与组装
  • 批准号:
    559777-2021
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Controlled Assembly of Nanocellulose into Functional Hierarchical Mesostructures
纳米纤维素受控组装成功能性分层介观结构
  • 批准号:
    RGPIN-2018-06818
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Structural and mechanistic basis of AAGAB-controlled AP2 adaptor assembly
AAGAB 控制的 AP2 适配器组件的结构和机械基础
  • 批准号:
    10034221
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
Development of catalytic membranes by controlled assembly of heteropolyacid molecules
通过杂多酸分子的受控组装开发催化膜
  • 批准号:
    20K05224
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了