NSWP: Automated Monitoring and Forecasting of Space Weather using Artificial Intelligence Techniques

NSWP:利用人工智能技术自动监测和预报空间天气

基本信息

  • 批准号:
    0716950
  • 负责人:
  • 金额:
    $ 15.14万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-08-01 至 2010-07-31
  • 项目状态:
    已结题

项目摘要

The proposing team will use pattern recognition techniques to predict the occurrence of solar flares, developing a new tool known as the Support Vector Machine (SVM). The proposers intend to develop tools to detect new magnetic flux emergence on the Sun, using circular harmonic component decomposition as a filter for an artificial intelligence classifier. This technique will characterize new flux emergence and establish the probabilities for active regions to become flare productive. They will implement a solar flare detection and characterization algorithm, including a classification scheme using the SVM, active region growth, and edge enhancement techniques. The algorithm will detect flare ribbon separations and help determine the electric currents in magnetic reconnection regions. The PI will also study a large number of CMEs using a characterization routine to establish the relationship between CME speed and magnetic reconnection rate. This will allow the prediction of CME kinetics based on real- time monitoring of magnetic reconnection. This effort will enhance our understanding and prediction of processes affecting solar activity and the propagation of resulting solar effects to the Earth via the solar wind. The work is inherently interdisciplinary, involving cutting-edge solar physics and computer science research. The techniques developed here also have potential utility for medical imaging, terrestrial weather forecasting, and pattern recognition for moving targets relevant to military applications. This proposal's education and training component involves the support of a newly graduated post-doctoral researcher and a graduate student.
提议团队将使用模式识别技术来预测太阳耀斑的发生,开发一种名为支持向量机(SVM)的新工具。提议者打算开发工具来检测太阳上出现的新磁通量,使用圆谐波分量分解作为人工智能分类器的过滤器。这项技术将表征新的通量出现,并建立活跃地区成为耀斑生产的概率。他们将实施太阳耀斑检测和表征算法,包括使用SVM的分类方案,活动区域生长和边缘增强技术。该算法将检测耀斑带分离,并帮助确定磁场重联区域的电流。PI还将使用表征程序研究大量CME,以建立CME速度和磁场重联率之间的关系。这将允许基于磁场重联的真实的实时监测来预测CME动力学。这一努力将加强我们对影响太阳活动的过程以及由此产生的太阳效应通过太阳风传播到地球的理解和预测。 这项工作本质上是跨学科的,涉及尖端的太阳物理学和计算机科学研究。这里开发的技术也有潜在的效用,医学成像,地面天气预报,和模式识别相关的军事应用的移动目标。这项建议的教育和培训部分涉及一名新毕业的博士后研究员和一名研究生的支助。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ju Jing其他文献

Seasonal Variation of the Dominant Low-Frequency Variability Observed in the Barotropic Component of the Atmosphere : A Connection to the Arctic Oscillation
在大气正压成分中观测到的主要低频变化的季节变化:与北极涛动的联系
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    谷垣勝己;Ju Jing;佐々木淳;豊田直樹;Y. Takeda;Y.F.Inoue;Naomi YOKOYAMA
  • 通讯作者:
    Naomi YOKOYAMA
Effect of slow release fertilizer on yield and yield components in Chinese high-yielding rice cultivars.
缓释肥对中国高产水稻品种产量及产量构成的影响
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    T. Kokubo;A. Miyazaki;T. Yoshida;Yoshinori Yamamoto;Ju Jing;Wang Yulong;Suharsono;H. Ehara;H. Minarsih;K. Wiryawan;Miftahuddin;M. Yunus;T. M. Ermayanti;U. Widyastuti
  • 通讯作者:
    U. Widyastuti
Modulation of the Shubnikov-de Haas Oscillation in Unidirectional Lateral Superlattices
单向横向超晶格中舒布尼科夫-德哈斯振荡的调制
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yoshimitsu Kohama;Takeshi Rachi;Ju Jing;Zhaofei Li;Jun Tang;Ryotaro Kumashiro;Satoru Izumisawa;Hitoshi Kawaji;Tooru Atake;Hiroshi Sawa;Yasujiro Murata;Koichi Komatsu;Katsumi Tanigaki;Akira Endo and Yasuhiro Iye
  • 通讯作者:
    Akira Endo and Yasuhiro Iye
Transcriptomic and Co-Expression Network Profiling of Shoot Apical Meristem Reveal Contrasting Response to Nitrogen Rate between Indica and Japonica Rice Subspecies.
  • DOI:
    DOI: 10.3390/ijms20235922
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
  • 作者:
    Zhang Xiaoxiang;Zhou Juan;Huang Niansheng;Mo Lanjing;Lv Minjia;Chen Chen;Yin Shuangyi;Ju Jing;Dong Guichun;Zhou Yong;Yang Zefeng;Li Aihong;Wang Yulong;Huang Jianye;Yao Youli
  • 通讯作者:
    Yao Youli
Prediction of Geoeffective CMEs Using SOHO Images and Deep Learning
  • DOI:
    10.1007/s11207-024-02385-w
  • 发表时间:
    2024-11-20
  • 期刊:
  • 影响因子:
    2.400
  • 作者:
    Khalid A. Alobaid;Jason T. L. Wang;Haimin Wang;Ju Jing;Yasser Abduallah;Zhenduo Wang;Hameedullah Farooki;Huseyin Cavus;Vasyl Yurchyshyn
  • 通讯作者:
    Vasyl Yurchyshyn

Ju Jing的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ju Jing', 18)}}的其他基金

Collaborative Research: ANSWERS: Prediction of Geoeffective Solar Eruptions, Geomagnetic Indices, and Thermospheric Density Using Machine Learning Methods
合作研究:答案:使用机器学习方法预测地球有效太阳喷发、地磁指数和热层密度
  • 批准号:
    2149748
  • 财政年份:
    2022
  • 资助金额:
    $ 15.14万
  • 项目类别:
    Standard Grant
Three-Dimensional Magnetic Configuration and Evolution of Flare Productive Active Regions
耀斑生产活动区的三维磁结构和演化
  • 批准号:
    0936665
  • 财政年份:
    2009
  • 资助金额:
    $ 15.14万
  • 项目类别:
    Standard Grant

相似海外基金

AutoPharmacist: Automated Medication Monitoring System in Primary Care
AutoPharmacist:初级保健中的自动药物监测系统
  • 批准号:
    10100250
  • 财政年份:
    2024
  • 资助金额:
    $ 15.14万
  • 项目类别:
    Collaborative R&D
Condition Monitoring of Aircraft Propulsion for Automated Diagnostics
用于自动诊断的飞机推进状态监测
  • 批准号:
    LP220200934
  • 财政年份:
    2024
  • 资助金额:
    $ 15.14万
  • 项目类别:
    Linkage Projects
Non-invasive Condition Monitoring of Ventricular Assistive Devices Using Automated Advanced Acoustic Methods
使用自动化先进声学方法对心室辅助装置进行无创状态监测
  • 批准号:
    10629554
  • 财政年份:
    2023
  • 资助金额:
    $ 15.14万
  • 项目类别:
Automated Flow Synthesis: In-Line Reaction Monitoring and Machine Learning for the Optimisation of Continuous Flow Photocatalytic Reactions
自动流动合成:用于优化连续流动光催化反应的在线反应监测和机器学习
  • 批准号:
    2894726
  • 财政年份:
    2023
  • 资助金额:
    $ 15.14万
  • 项目类别:
    Studentship
Automated monitoring of health and welfare in groups of pigs using evidential reasoning and video-analytics
使用证据推理和视频分析自动监测猪群的健康和福利
  • 批准号:
    2886810
  • 财政年份:
    2023
  • 资助金额:
    $ 15.14万
  • 项目类别:
    Studentship
Intellipig: An automated on-farm pig health monitoring system
Intellipig:自动化农场生猪健康监测系统
  • 批准号:
    10073790
  • 财政年份:
    2023
  • 资助金额:
    $ 15.14万
  • 项目类别:
    Collaborative R&D
Improving Husbandry and Data Reproducibility Through Automated Health Monitoring in Zebrafish Facilities
通过斑马鱼设施的自动健康监测改善饲养和数据再现性
  • 批准号:
    10761190
  • 财政年份:
    2023
  • 资助金额:
    $ 15.14万
  • 项目类别:
Proactive Intelligent Construction Site Management Enabled by Automated On Site Monitoring (PRISM)
通过自动化现场监控 (PRISM) 实现主动式智能施工现场管理
  • 批准号:
    10081748
  • 财政年份:
    2023
  • 资助金额:
    $ 15.14万
  • 项目类别:
    Collaborative R&D
Development and validation of an automated structural health monitoring system for post-earthquake building safety evaluations
用于震后建筑安全评估的自动结构健康监测系统的开发和验证
  • 批准号:
    22KF0087
  • 财政年份:
    2023
  • 资助金额:
    $ 15.14万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
BlueView - AI-Powered Automated Infrastructure Monitoring for Marine Aquaculture Farms
BlueView - 人工智能驱动的海水养殖场自动化基础设施监控
  • 批准号:
    10079133
  • 财政年份:
    2023
  • 资助金额:
    $ 15.14万
  • 项目类别:
    Collaborative R&D
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了