Bayesian Analysis and Prediction of Gaussian Random Fields
高斯随机场的贝叶斯分析和预测
基本信息
- 批准号:0719508
- 负责人:
- 金额:$ 7.34万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-09-15 至 2010-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project develops methodology for objective Bayesian analysis of spatial data, both geostatistical and lattice data, that arise in many of the social and earth sciences, such as economy, epidemiology, geography, geology and hydrology, as well as computationally efficient algorithms to perform Bayesian analysis and prediction based on moderate to large spatial datasets. On the methodological side, the investigator derives new automatic prior distributions for the parameters of different kinds of Gaussian random fields, specified either by their covariance matrices or by their precision matrices. The research explores the main statistical properties of Bayesian inferences based on these automatic priors, such as conditions for posterior propriety, frequentist properties of parameter andpredictive inferences, and existence of predictive summaries.A point of particular interest is the study of the pros and cons of the dependence of these automatic priors on the sampling design.On the computational side, the investigator derives methods to approximate these automatic priors distributions, since evaluation of these priors is in most cases computationally expensive, and develops new computationally efficient algorithms for Bayesian inference and prediction of spatial data that would make feasible Bayesian analysis based on moderate to large spatial datasets.The methodology proposed in this project serves as an initial step toward the development of objective Bayesian analysis for spatial hierarchical models used to describe non-Gaussian data, since most of these models use Gaussian random fields as building blocks.The statistical methodology developed during this project has practicalimpacts in many social and earth sciences, such as economy, epidemiology, geography, geology and hydrology, where the collection and analysis of spatial data have become common tasks.A paradigm of statistics called the Bayesian approach possesses several conceptual and methodological advantages when compared to traditional approaches for the analysis of spatial data, but technical and computational difficulties that arise during implementation have hindered its more widespread use among practitioners.This is particularly so for the analysis of some types large spatial datasets where current implementations of the Bayesian approach are too cumbersome or unfeasible to be carried out.The statistical methodology developed in this project would contribute to overcome some of these technical and computational hurdles, andconsequently to bridge the gap between methodology and practice for Bayesian analysis of spatial data.Graduate students would be engaged in the project, contributing to their statistical training as well as the enhancement of the Statistics program at the University of Arkansas.
该项目开发了对空间数据进行客观贝叶斯分析的方法,包括地质统计学和格点数据,这些数据出现在许多社会和地球科学中,如经济,流行病学,地理,地质学和水文学,以及计算效率高的算法,以基于中等到大型空间数据集进行贝叶斯分析和预测。在方法方面,研究人员推导出不同类型高斯随机场参数的新的自动先验分布,由其协方差矩阵或精度矩阵指定。研究了基于这些自动先验的贝叶斯推理的主要统计性质,如后验适当性的条件、参数和预测推理的频率论性质以及预测总结的存在性。特别感兴趣的一点是研究这些自动先验对抽样设计的依赖性的利弊。在计算方面,研究者推导出近似这些自动先验分布的方法,因为这些先验的评估在大多数情况下在计算上是昂贵的,并为贝叶斯推理和空间数据预测开发了新的计算效率高的算法,这些算法将使基于中到大空间数据的贝叶斯分析变得可行。数据集。该项目中提出的方法是为用于描述非高斯数据的空间分层模型开发客观贝叶斯分析的第一步,因为大多数这些模型使用高斯随机场作为构建块。该项目中开发的统计方法在许多社会和地球科学中具有实际影响,如经济,流行病学,地理,地质学和水文学,其中空间数据的收集和分析已成为常见的任务。与传统的空间数据分析方法相比,称为贝叶斯方法的统计学范式具有几个概念和方法上的优势,但在实施过程中出现的技术和计算困难阻碍了其在从业人员中的更广泛使用。因此,对于某些类型的大型空间数据集的分析,目前的贝叶斯方法的实现过于繁琐或不可行。在这个项目中开发的统计方法将有助于克服这些技术和计算障碍,从而弥合空间数据贝叶斯分析方法和实践之间的差距。研究生将参与这个项目,有助于他们的统计培训,以及在阿肯色州的统计程序的增强。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Victor De Oliveira其他文献
On the Relative Effects of Wall and Intraluminal Thrombus Constitutive Material Properties in Abdominal Aortic Aneurysm Wall Stress
- DOI:
10.1007/s13239-024-00757-8 - 发表时间:
2024-10-28 - 期刊:
- 影响因子:1.800
- 作者:
Vivian Reyna;Niusha Fathesami;Wei Wu;Satish C. Muluk;Victor De Oliveira;Ender A. Finol - 通讯作者:
Ender A. Finol
A note on a non-stationary point source spatial model
- DOI:
10.1007/s10651-012-0207-2 - 发表时间:
2012-07-11 - 期刊:
- 影响因子:1.800
- 作者:
Mark D. Ecker;Victor De Oliveira;Hans Isakson - 通讯作者:
Hans Isakson
Interpolation performance of a spatio-temporal model with spatially varying coefficients: application to PM10 concentrations in Rio de Janeiro
- DOI:
10.1007/s10651-005-1040-7 - 发表时间:
2005-06-01 - 期刊:
- 影响因子:1.800
- 作者:
Marina Silva Paez;Dani Gamerman;Victor De Oliveira - 通讯作者:
Victor De Oliveira
Default Priors for the Smoothness Parameter in Gaussian Matérn Random Fields
高斯 Matérn 随机场中平滑参数的默认先验
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:4.4
- 作者:
Zifei Han;Victor De Oliveira - 通讯作者:
Victor De Oliveira
Approximate reference priors for Gaussian random fields
高斯随机场的近似参考先验
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:1
- 作者:
Victor De Oliveira;Zifei Han - 通讯作者:
Zifei Han
Victor De Oliveira的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Victor De Oliveira', 18)}}的其他基金
Default Bayesian Analysis of Spatial Data
空间数据的默认贝叶斯分析
- 批准号:
2113375 - 财政年份:2021
- 资助金额:
$ 7.34万 - 项目类别:
Standard Grant
Geostatistical Modeling of Spatial Discrete Data
空间离散数据的地统计建模
- 批准号:
1208896 - 财政年份:2012
- 资助金额:
$ 7.34万 - 项目类别:
Continuing Grant
Bayesian Analysis and Prediction of Gaussian Random Fields
高斯随机场的贝叶斯分析和预测
- 批准号:
0505759 - 财政年份:2005
- 资助金额:
$ 7.34万 - 项目类别:
Continuing Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
基于Meta-analysis的新疆棉花灌水增产模型研究
- 批准号:41601604
- 批准年份:2016
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大规模微阵列数据组的meta-analysis方法研究
- 批准号:31100958
- 批准年份:2011
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
用“后合成核磁共振分析”(retrobiosynthetic NMR analysis)技术阐明青蒿素生物合成途径
- 批准号:30470153
- 批准年份:2004
- 资助金额:22.0 万元
- 项目类别:面上项目
相似海外基金
Analysis of the regulation of placental barrier factors for prediction of placental endocrine disruption
胎盘屏障因子调控分析对胎盘内分泌干扰的预测
- 批准号:
23K06240 - 财政年份:2023
- 资助金额:
$ 7.34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Genome analysis-based prediction model development for response to stereotactic radiosurgery in benign brain tumors
基于基因组分析的预测模型开发,用于良性脑肿瘤立体定向放射外科治疗的反应
- 批准号:
23K08495 - 财政年份:2023
- 资助金额:
$ 7.34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Sleep and Cardiometabolic Subgroup Discovery and Risk Prediction in United States Adolescents and Young Adults: A Multi-Study Multi-Domain Analysis of NHANES and NSRR
美国青少年和年轻人的睡眠和心脏代谢亚组发现和风险预测:NHANES 和 NSRR 的多研究多领域分析
- 批准号:
10639360 - 财政年份:2023
- 资助金额:
$ 7.34万 - 项目类别:
Prediction of Deterioration of Tuff Stones Used for Building Exterior Based on Thermal Moisture Stress Analysis
基于热湿应力分析的建筑外墙凝灰岩劣化预测
- 批准号:
23K04152 - 财政年份:2023
- 资助金额:
$ 7.34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Analysis of cause of pandemic of fusarium diseases of plants and development for outbreak prediction based on future-epidemiology
植物镰刀菌病流行原因分析及未来流行病学暴发预测研究进展
- 批准号:
23H00331 - 财政年份:2023
- 资助金额:
$ 7.34万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Feature extraction of reaction route map by topological data analysis and its application to reactivity comparison, classification, and prediction
拓扑数据分析反应路线图特征提取及其在反应性比较、分类和预测中的应用
- 批准号:
23H01915 - 财政年份:2023
- 资助金额:
$ 7.34万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of a Prediction and Evaluation Method for Load Initiation Timing and Load Magnitude in Femoral Shaft Fractures Using Finite Element Analysis
利用有限元分析开发股骨干骨折载荷启动时间和载荷大小的预测和评估方法
- 批准号:
23K08691 - 财政年份:2023
- 资助金额:
$ 7.34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
BREATH-SENSE: Miniaturized plasma emission spectroscopy-based breath analysis for unobtrusive at-home monitoring and prediction of COPD exacerbations
BREATH-SENSE:基于小型等离子体发射光谱的呼吸分析,用于在家监测和预测 COPD 恶化
- 批准号:
10093352 - 财政年份:2023
- 资助金额:
$ 7.34万 - 项目类别:
EU-Funded
Random Field Methods for integrative genomic analysis and high-dimensional risk prediction of congenital heart defects
用于先天性心脏病综合基因组分析和高维风险预测的随机场方法
- 批准号:
10905156 - 财政年份:2023
- 资助金额:
$ 7.34万 - 项目类别:
The Dundee Resource for Sequence Analysis and Structure Prediction (DRSASP) - 2023 and Beyond
邓迪序列分析和结构预测资源 (DRSASP) - 2023 年及以后
- 批准号:
BB/X018628/1 - 财政年份:2023
- 资助金额:
$ 7.34万 - 项目类别:
Research Grant