Smoothly Mixing Regression Models

平滑混合回归模型

基本信息

  • 批准号:
    0720547
  • 负责人:
  • 金额:
    $ 20.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-08-01 至 2010-07-31
  • 项目状态:
    已结题

项目摘要

In applied scientific research as well as in public policy, interest often centers on the influence of some observed characteristics (for example, an individual's age and education) on the probability of a particular event (for example, that an individual's earnings will exceed the poverty threshold). Moreover, these influences may change over time (for example, college graduates may earn more compared to high school graduates today than they did in the 1970's). This project develops quantitative methods for using existing databases to reliably assess the impact of observed characteristics on events that are important in public and private policymaking as well as applied scientific research. The project extends recent advances in the fields of econometrics, statistics and computer science leading to assessments of the influence of observed characteristics on outcomes of interest that are more reliable and practical than has heretofore been possible. The project has three main components. First, it establishes new results in econometrics on the approximation of conditional distributions under weak conditions, using a sequence of models demonstrated to be practical and reliable in the recent research of the investigator, the smoothly mixing regression models of the title. Second, it addresses a series of practical issues in order to enhance the utility of these models, including the use of parallel computing environments to handle large data sets that are increasingly common in economics, the evaluation of competing models, and application of these procedures when several outcomes are simultaneously of interest. Third, it applies these developments in two leading contexts: the aforementioned example involving the influence of individual characteristics on earnings, using the Current Population Survey of the U.S. Census, and measuring the risk associated with investment in financial assets. Broader impacts: One of the major themes in econometrics and statistics is the development of general methods that do not require restrictive assumptions yet give precise estimates and are computationally feasible. This project builds on the many past contributions by the investigator on this theme and should lead to a major advance in computationally feasible yet flexible methods. These methods will benefit research in a wide range of disciplines including economics, statistics, public health, biostatistics and environmental sciences. The project addresses questions that arise regularly in the Federal statistical system. The investigator rapidly disseminates and applies research findings and regularly interacts with a diverse group of students from academia, government and the private sector through intensive one-week courses taught in various locations.
在应用科学研究和公共政策中,人们的兴趣通常集中在一些观察到的特征(例如,个人的年龄和教育程度)对特定事件的概率(例如,个人的收入将超过贫困线)的影响。此外,这些影响可能会随着时间的推移而发生变化(例如,与 1970 年代相比,当今大学毕业生的收入可能比高中毕业生高)。该项目开发定量方法,使用现有数据库可靠地评估观察到的特征对公共和私人政策制定以及应用科学研究中重要事件的影响。该项目扩展了计量经济学、统计学和计算机科学领域的最新进展,从而对观察到的特征对感兴趣的结果的影响进行评估,这种评估比以往任何时候都更加可靠和实用。该项目由三个主要部分组成。首先,它使用了研究者最近研究中证明实用且可靠的一系列模型,即标题的平滑混合回归模型,建立了计量经济学中关于弱条件下条件分布近似的新结果。其次,它解决了一系列实际问题,以增强这些模型的实用性,包括使用并行计算环境来处理经济学中日益常见的大型数据集、竞争模型的评估以及当多个结果同时感兴趣时这些程序的应用。第三,它将这些发展应用于两个主要背景:前面提到的例子涉及个人特征对收入的影响,使用美国人口普查的当前人口调查,以及衡量与金融资产投资相关的风险。更广泛的影响:计量经济学和统计学的主要主题之一是开发不需要限制性假设但可以给出精确估计并且在计算上可行的通用方法。该项目建立在研究者过去就该主题做出的许多贡献的基础上,应该会导致计算上可行且灵活的方法取得重大进展。这些方法将有利于经济学、统计学、公共卫生、生物统计学和环境科学等广泛学科的研究。该项目解决了联邦统计系统中经常出现的问题。研究人员迅速传播和应用研究成果,并通过在不同地点教授为期一周的强化课程,定期与来自学术界、政府和私营部门的不同学生群体进行互动。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

John Geweke其他文献

Evaluating the Predictive Distributions of Bayesian Models of Asset Returns
评估资产回报贝叶斯模型的预测分布
Inferring Hospital Quality from Patient Discharge Records Using a Bayesian Selection Model
使用贝叶斯选择模型从患者出院记录推断医院质量
  • DOI:
  • 发表时间:
    2000
  • 期刊:
  • 影响因子:
    0
  • 作者:
    John Geweke;Gautam Gowrisankaran;R. Town
  • 通讯作者:
    R. Town
Using Simulation Methods for Bayesian Econometric Models
使用贝叶斯计量经济学模型的模拟方法
  • DOI:
  • 发表时间:
    1999
  • 期刊:
  • 影响因子:
    0
  • 作者:
    John Geweke
  • 通讯作者:
    John Geweke
Measures of Conditional Linear Dependence and Feedback between Time Series
DISCUSSION ON THE MEETING ON THE GIBBS SAMPLER AND OTHER MARKOV CHAIN-MONTE CARLO METHODS
吉布斯采样器和其他马尔可夫链蒙特卡罗方法会议的讨论
  • DOI:
  • 发表时间:
    1993
  • 期刊:
  • 影响因子:
    0
  • 作者:
    P. Clifford;C. Jennison;J. Wakefield;D. Phillips;A. Frigessi;A. Gray;A. Lawson;J. Forster;P. Ramgopal;O. Arslan;Pdl Constable;Jt Kent;R. Wolff;E. Harding;R. Middleton;P. Diggle;R. Aykroyd;C. Berzuini;M. Brewer;C. Aitken;G. Celeux;J. Diebolt;F. Critchley;P. Diaconis;Js Rosenthal;C. Robert;A. Gelfand;Tm Lee;A. Gelman;D. Rubin;D. Geman;John Geweke;C. Geyer;A. Gigli;G. Givens;C. Goodall;G. Jonalasinio;A. Grieve;X. Han;J. Kolassa;M. Tanner;C. Kooperberg;S. Lewis;S. Lin;E. Thompson;C. Litton;Ce Buck;Ch. Liu;J. Liu;K. Mardia;J. Marriott;J. Møller;A. Raftery;N. Shephard;D. Sinha;A. Sokal;D. Titterington;J. Wilson;J. York;D. Madigan;Afm Smith;Go Roberts;J. Besag;P. Green;W. Gilks;D. Clayton;D. Spiegelhalter
  • 通讯作者:
    D. Spiegelhalter

John Geweke的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('John Geweke', 18)}}的其他基金

Bayesian Analysis, Computation and Communication
贝叶斯分析、计算和通信
  • 批准号:
    0214303
  • 财政年份:
    2002
  • 资助金额:
    $ 20.99万
  • 项目类别:
    Continuing Grant
Doctoral Dissertation Research: A Bargaining Model of Corporate Bankruptcy Reorganization
博士论文研究:企业破产重整的讨价还价模型
  • 批准号:
    9986574
  • 财政年份:
    2000
  • 资助金额:
    $ 20.99万
  • 项目类别:
    Standard Grant
Flexible Bayesian Econometric Modeling
灵活的贝叶斯计量经济学建模
  • 批准号:
    9996332
  • 财政年份:
    1999
  • 资助金额:
    $ 20.99万
  • 项目类别:
    Continuing Grant
Flexible Bayesian Econometric Modeling
灵活的贝叶斯计量经济学建模
  • 批准号:
    9819444
  • 财政年份:
    1999
  • 资助金额:
    $ 20.99万
  • 项目类别:
    Continuing Grant
Bayesian Analysis, Computation and Communication in the Social Sciences
社会科学中的贝叶斯分析、计算和传播
  • 批准号:
    9731037
  • 财政年份:
    1998
  • 资助金额:
    $ 20.99万
  • 项目类别:
    Continuing Grant
Bayesian Communication in the Social Sciences
社会科学中的贝叶斯传播
  • 批准号:
    9600040
  • 财政年份:
    1996
  • 资助金额:
    $ 20.99万
  • 项目类别:
    Standard Grant
Posterior Simulators in Econometrics
计量经济学中的后验模拟器
  • 批准号:
    9514865
  • 财政年份:
    1996
  • 资助金额:
    $ 20.99万
  • 项目类别:
    Continuing Grant
Sampling-Based Approaches to Bayesian Inference in Econometrics
计量经济学中基于抽样的贝叶斯推理方法
  • 批准号:
    9210070
  • 财政年份:
    1992
  • 资助金额:
    $ 20.99万
  • 项目类别:
    Continuing Grant
Computational Approaches to Econometrics and Economic Modelling
计量经济学和经济建模的计算方法
  • 批准号:
    9196003
  • 财政年份:
    1990
  • 资助金额:
    $ 20.99万
  • 项目类别:
    Continuing Grant
Fifth International Conference on the Foundations and Applications of Utility, Risk and Decision Theory , Durham, North Carolina, June 10-13, 1990
第五届效用、风险和决策理论的基础和应用国际会议,北卡罗来纳州达勒姆,1990 年 6 月 10-13 日
  • 批准号:
    8921398
  • 财政年份:
    1990
  • 资助金额:
    $ 20.99万
  • 项目类别:
    Standard Grant

相似海外基金

New measurement of the weak mixing angle
弱混合角的新测量
  • 批准号:
    2908000
  • 财政年份:
    2024
  • 资助金额:
    $ 20.99万
  • 项目类别:
    Studentship
CAREER: Graded and Reliable Aerosol Deposition for Electronics (GRADE): Understanding Multi-Material Aerosol Jet Printing with In-Line Mixing
职业:电子产品的分级且可靠的气溶胶沉积 (GRADE):了解通过在线混合进行多材料气溶胶喷射打印
  • 批准号:
    2336356
  • 财政年份:
    2024
  • 资助金额:
    $ 20.99万
  • 项目类别:
    Standard Grant
Moving away from aeration – utilising computational fluid dynamics modelling ofmechanical mixing within an industrial scale nature-based wastewater treatment system
摆脱曝气 — 在工业规模的基于自然的废水处理系统中利用机械混合的计算流体动力学模型
  • 批准号:
    10092420
  • 财政年份:
    2024
  • 资助金额:
    $ 20.99万
  • 项目类别:
    Collaborative R&D
Capturing Oceanic Submesoscales, Stirring and Mixing with Sound and Simulations
通过声音和模拟捕捉海洋亚尺度、搅拌和混合
  • 批准号:
    EP/Y014693/1
  • 财政年份:
    2024
  • 资助金额:
    $ 20.99万
  • 项目类别:
    Research Grant
Resonant Acoustic Mixing facility for sustainable chemical manufacturing
用于可持续化学制造的共振声学混合设施
  • 批准号:
    EP/Z53111X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 20.99万
  • 项目类别:
    Research Grant
Collaborative Research: A Multipronged Approach to Investigate how Hydrography and Mixing Shape Productive Fjord Ecosystems in Greenland
合作研究:采用多管齐下的方法来研究水文学和混合如何塑造格陵兰岛富有生产力的峡湾生态系统
  • 批准号:
    2335928
  • 财政年份:
    2024
  • 资助金额:
    $ 20.99万
  • 项目类别:
    Standard Grant
Collaborative Research: A Multipronged Approach to Investigate how Hydrography and Mixing Shape Productive Fjord Ecosystems in Greenland
合作研究:采用多管齐下的方法来研究水文学和混合如何塑造格陵兰岛富有生产力的峡湾生态系统
  • 批准号:
    2335929
  • 财政年份:
    2024
  • 资助金额:
    $ 20.99万
  • 项目类别:
    Standard Grant
Capturing Oceanic Submesoscales, Stirring, and Mixing with Sound and Simulations
通过声音和模拟捕捉海洋亚尺度、搅拌和混合
  • 批准号:
    MR/X035611/1
  • 财政年份:
    2024
  • 资助金额:
    $ 20.99万
  • 项目类别:
    Fellowship
Quantification of the Impact of Hydrologic Controls on Anomalous Solute Transport and Mixing Dynamics in Partially Saturated Porous Media
水文控制对部分饱和多孔介质中异常溶质输运和混合动力学影响的量化
  • 批准号:
    2329250
  • 财政年份:
    2024
  • 资助金额:
    $ 20.99万
  • 项目类别:
    Standard Grant
CAREER: Mixing and Equidistribution in Number Theory and Geometry
职业:数论和几何中的混合和均匀分布
  • 批准号:
    2337911
  • 财政年份:
    2024
  • 资助金额:
    $ 20.99万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了